Skip to main content

Natural Zeolites as Sustainable Materials for Environmental Processes

  • Chapter
  • First Online:
Nanostructured Catalysts for Environmental Applications

Abstract

In this chapter, the application of natural zeolites as sustainable materials for environmental protection is described. In particular, the clinoptilolite was studied for capturing carbon dioxide (CO2) emitted from industrial processes at moderate outlet temperatures and for wastewater remediation. Specifically, for CO2 capture and storage, the clinoptilolite was used as an adsorbent solid and it was tested at 20 and 65 °C. The wastewater treatment was achieved via Fenton-type reactions with a solution of azo-dyes acid orange 7 (AO7), as target molecule for azo dyes. The physico-chemical properties of the clinoptilolite, along with the ion-exchanged materials, were analyzed by means of N2 physisorption at −196 °C, X-Ray Diffraction (XRD), Field Emission Electron Microscopy (FESEM), and Energy Dispersive X-ray spectroscopy analysis (EDX). The results evidenced that the clinoptilolite can be a sustainable material for capturing CO2, because of the interesting adsorption capacity at moderate temperature. On the other hand, remarkable results for the AO7 degradation were obtained with the Fe-clinoptilolite catalyst in the presence of both ascorbic acid and H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.F. Cronstedt, Observation and description of an unknown kind of rock to be named zeolites. Kongl. Vetenskaps Acad. Handl. Stock. 17, 120–123 (1756)

    Google Scholar 

  2. R.W. Broach, D.-Y. Jan, D.A. Lesch, S. Kulprathipanja, E. Roland, P. Kleinschmit, Zeolites, in Ullmann’s Encyclopedia of Industrial Chemistry, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012). https://doi.org/10.1002/14356007.a28_475.pub2

    Chapter  Google Scholar 

  3. M. Sprynskyy, R. Golembiewski, G. Trykowski, B. Buszewski, Heterogeneity and hierarchy of clinoptilolite porosity. J. Phys. Chem. Solids 71, 1269–1277 (2010). https://doi.org/10.1016/j.jpcs.2010.05.006

    Article  CAS  Google Scholar 

  4. Y. Li, J.N. Armor, Selective catalytic reduction of NOx with methane over metal exchange zeolites. Appl. Catal. B Environ. 2, 239–256 (1993). https://doi.org/10.1016/0926-3373(93)80051-E

    Article  CAS  Google Scholar 

  5. L. Ćurković, Š. Cerjan-Stefanović, T. Filipan, Metal ion exchange by natural and modified zeolites. Water Res. 31, 1379–1382 (1997). https://doi.org/10.1016/S0043-1354(96)00411-3

    Article  Google Scholar 

  6. M. Iwamoto, H. Yahiro, Y. Mine, S. Kagawa, Excessively copper ion-exchanged ZSM-5 zeolites as highly active catalysts for direct decomposition of nitrogen monoxide. Chem. Lett. 18, 213–216 (1989). https://doi.org/10.1246/cl.1989.213

    Article  Google Scholar 

  7. T. Bein, Host-guest interactions in zeolites and periodic mesoporous materials. Stud. Surf. Sci. Catal. 168, 611-XIX (2007). https://doi.org/10.1016/S0167-2991(07)80806-8

    Article  Google Scholar 

  8. K. Tanabe, Industrial application of solid acid–base catalysts. Appl. Catal. A Gen. 181, 399–434 (1999). https://doi.org/10.1016/S0926-860X(98)00397-4

    Article  CAS  Google Scholar 

  9. P.B. Venuto, Organic catalysis over zeolites: a perspective on reaction paths within micropores. Micropor. Mater. 2, 297–411 (1994). https://doi.org/10.1016/0927-6513(94)00002-6

    Article  CAS  Google Scholar 

  10. K. Sakaguchi, M. Matsui, F. Mizukami, Applications of zeolite inorganic composites in biotechnology: current state and perspectives. Appl. Microbiol. Biotechnol. 67, 306–311 (2005). https://doi.org/10.1007/s00253-004-1782-4

    Article  CAS  Google Scholar 

  11. B. Yilmaz, A. Sacco, J. Deng, Electrical transport through monatomic titania chains. Appl. Phys. Lett. 90, 152101 (2007). https://doi.org/10.1063/1.2720742

    Article  CAS  Google Scholar 

  12. M. Dosa, M. Piumetti, S. Bensaid, N. Russo, O. Baglieri, F. Miglietta, D. Fino, Properties of the clinoptilolite: characterization and adsorption tests with methylene blue. J. Adv. Catal. Sci. Technol. 5, 1–10 (2018). https://www.cosmosscholars.com/phms/index.php/jacst/article/view/867/588

    Article  Google Scholar 

  13. M. Dosa, M. Piumetti, C. Galletti, N. Russo, D. Fino, S. Bensaid, G. Mancini, F.S. Freyria, G. Saracco, A novel Fe-containing clinoptilolite for wastewater remediation: degradation of azo-dyes acid orange 7 by H2O2 and ascorbic acid. Desalin. Water Treat. 159, 121–129 (2019). https://doi.org/10.5004/dwt.2019.24424

    Article  CAS  Google Scholar 

  14. E. Chmielewská-Horváthová, J. Lesný, Study of sorption equilibria in the systems: water solutions of inorganic ions—clinoptilolite. J. Radioanal. Nucl. Chem. Lett. 201, 293–301 (1995). https://doi.org/10.1007/BF02164048

    Article  Google Scholar 

  15. A. Aquino, E. Bonamente, C. Buratti, F. Cotana, B. Castellani, V. Paolini, F. Petracchini, Carbon dioxide removal with tuff: experimental measurement of adsorption properties and breakthrough modeling using CFD approach. Energy Procedia 101, 392–399 (2016). https://doi.org/10.1016/j.egypro.2016.11.050

    Article  CAS  Google Scholar 

  16. D.A. Kennedy, F.H. Tezel, Cation exchange modification of clinoptilolite – screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide. Micropor. Mesopor. Mater. 262, 235–250 (2018). https://doi.org/10.1016/j.micromeso.2017.11.054

    Article  CAS  Google Scholar 

  17. F. Mumpton, Clinoptilolite redefined. Am. Mineral. 45, 351–369 (1960)., http://ci.nii.ac.jp/naid/10011941740/. Accessed 27 Sept 2017

    CAS  Google Scholar 

  18. G. Tsitsishvili, T. Andronikashvili, G. Kirov, L. Filizova, Natural Zeolites (Ellis Horwood, Chichester, 1992). https://doi.org/10.1163/_q3_SIM_00374

    Book  Google Scholar 

  19. F.A. Mumpton, W.C. Ormsby, Morphology of zeolites in sedimentary rocks by scanning electron microscopy. Clay Clay Miner. 24, 1–23 (1976). https://doi.org/10.1346/CCMN.1976.0240101

    Article  CAS  Google Scholar 

  20. F.A. Mumpton, La roca magica: uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. U. S. A. 96, 3463–3470 (1999). https://doi.org/10.1073/pnas.96.7.3463

    Article  CAS  Google Scholar 

  21. A.E. Osmanlioglu, Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J. Hazard. Mater. 137, 332–335 (2006). https://doi.org/10.1016/j.jhazmat.2006.02.013

    Article  CAS  Google Scholar 

  22. E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 280, 309–314 (2004). https://doi.org/10.1016/j.jcis.2004.08.028

    Article  CAS  Google Scholar 

  23. A. Arefi Pour, S. Sharifnia, R. NeishaboriSalehi, M. Ghodrati, Performance evaluation of clinoptilolite and 13X zeolites in CO2 separation from CO2/CH4 mixture. J. Nat. Gas Sci. Eng. 26, 1246–1253 (2015). https://doi.org/10.1016/j.jngse.2015.08.033

    Article  CAS  Google Scholar 

  24. G. Aguilar-armenta, M.E. Patiño-iglesias, R.L. Centro, Adsorption kinetic behaviour of pure CO2, N2 and CH4 in natural clinoptilolite at different temperatures. Adsorpt. Sci. Technol. 21, 81–91 (2003). https://doi.org/10.1260/02636170360699831

    Article  CAS  Google Scholar 

  25. M. Qiu, C. Qian, J. Xu, J. Wu, G. Wang, Studies on the adsorption of dyes into clinoptilolite. Desalination 243, 286–292 (2009). https://doi.org/10.1016/j.desal.2008.04.029

    Article  CAS  Google Scholar 

  26. D.S. Karousos, A.A. Sapalidis, E.P. Kouvelos, G.E. Romanos, N.K. Kanellopoulos, A study on natural clinoptilolite for CO2/N2 gas separation. Sep. Sci. Technol. 51, 83–95 (2016). https://doi.org/10.1080/01496395.2015.1085880

    Article  CAS  Google Scholar 

  27. C. Galletti, M. Dosa, N. Russo, D. Fino, Zn2+ and Cd2+ removal from wastewater using clinoptilolite as adsorbent. Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-020-08483-z

  28. S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24 (2010). https://doi.org/10.1016/j.cej.2009.10.029

    Article  CAS  Google Scholar 

  29. N. Gargiulo, F. Pepe, D. Caputo, CO2 adsorption by functionalized nanoporous materials: a review. J. Nanosci. Nanotechnol. 14, 1811–1822 (2014). https://doi.org/10.1166/jnn.2014.8893

    Article  CAS  Google Scholar 

  30. M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos. Environ. 140, 117–134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031

    Article  CAS  Google Scholar 

  31. E. Muzenda, J. Kabuba, F.N.M. Mollagee, Kinetics study of ammonia removal from synthetic waste water. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 5(7), 524–527 (2011). http://waset.org/publications/1075/kinetics-study-of-ammonia-removal-from-synthetic-waste-water

  32. T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa, E.F. May, The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94–95, 123–154 (2012). https://doi.org/10.1016/j.petrol.2012.06.016

    Article  CAS  Google Scholar 

  33. S.U. Rege, R.T. Yang, M.A. Buzanowski, Sorbents for air prepurification in air separation. Chem. Eng. Sci. 55, 4827–4838 (2000). https://doi.org/10.1016/S0009-2509(00)00122-6

    Article  CAS  Google Scholar 

  34. M. Khraisheh, S. Mukherjee, A. Kumar, F. Al Momani, G. Walker, M.J. Zaworotko, An overview on trace CO2 removal by advanced physisorbent materials. J. Environ. Manage. 255, 109874 (2020). https://doi.org/10.1016/j.jenvman.2019.109874

    Article  CAS  Google Scholar 

  35. D. Saha, Z. Bao, F. Jia, S. Deng, Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 44, 1820–1826 (2010). https://doi.org/10.1021/es9032309

    Article  CAS  Google Scholar 

  36. S. Sjostrom, H. Krutka, Evaluation of solid sorbents as a retrofit technology for CO2 capture. Fuel 89, 1298–1306 (2010). https://doi.org/10.1016/j.fuel.2009.11.019

    Article  CAS  Google Scholar 

  37. V.J. Inglezakis, A.A. Zorpas, Handbook of Natural Zeolites (Bentham Science Publishers, Sharjah, 2012). https://doi.org/10.2174/97816080526151120101

    Book  Google Scholar 

  38. D.A. Kennedy, M. Mujčin, C. Abou-Zeid, F.H. Tezel, Cation exchange modification of clinoptilolite–thermodynamic effects on adsorption separations of carbon dioxide, methane, and nitrogen. Micropor. Mesopor. Mater. 274, 327–341 (2019). https://doi.org/10.1016/j.micromeso.2018.08.035

    Article  CAS  Google Scholar 

  39. G. Aguilar-Armenta, G. Hernandez-Ramirez, E. Flores-Loyola, A. Ugarte-Castaneda, R. Silva-Gonzalez, C. Tabares-Munoz, A. Jimenez-Lopez, E. Rodriguez-Castellon, Adsorption kinetics of CO2, O2, N2, and CH4 in cation-exchanged clinoptilolite. J. Phys. Chem. B 105, 1313–1319 (2001). https://doi.org/10.1021/jp9934331

    Article  CAS  Google Scholar 

  40. R.V. Siriwardane, M.S. Shen, E.P. Fisher, Adsorption of CO2, N2, and O2 on natural zeolites. Energy Fuels 17, 571–576 (2003). https://doi.org/10.1021/ef020135l

    Article  CAS  Google Scholar 

  41. M.W. Ackley, R.F. Giese, R.T. Yang, Clinoptilolite: untapped potential for kinetics gas separations. Zeolites 12, 780–788 (1992). https://doi.org/10.1016/0144-2449(92)90050-Y

    Article  CAS  Google Scholar 

  42. R.T. Pabalan, F.P. Bertetti, Cation-exchange properties of natural zeolites. Rev. Mineral. Geochem. 45, 453–517 (2001). https://doi.org/10.2138/rmg.2001.45.14

    Article  CAS  Google Scholar 

  43. D. Karadag, Modeling the mechanism, equilibrium and kinetics for the adsorption of Acid Orange 8 onto surfactant-modified clinoptilolite: the application of nonlinear regression analysis. Dyes Pigments 74, 659–664 (2007). https://doi.org/10.1016/j.dyepig.2006.04.009

    Article  CAS  Google Scholar 

  44. B. Armaǧan, M. Turan, O. Özdemir, M.S. Çelik, Color removal of reactive dyes from water by clinoptilolite. J. Environ. Sci. Heal. Part A Toxic Hazard. Subst. Environ. Eng. 39, 1251–1261 (2004). https://doi.org/10.1081/ESE-120030329

    Article  CAS  Google Scholar 

  45. T. Sismanoglu, Y. Kismir, S. Karakus, Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite. J. Hazard. Mater. 184, 164–169 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.019

    Article  CAS  Google Scholar 

  46. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001). https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  47. Z. Wang, M. Xue, K. Huang, Z. Liu, Textile dyeing wastewater treatment, in Advances in Treating Textile Effluent, ed. by P. Hauser, (InTech, Shanghai, 2011). https://doi.org/10.5772/22670

    Chapter  Google Scholar 

  48. Q. Sun, L. Yang, The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res. 37, 1535–1544 (2003). https://doi.org/10.1016/S0043-1354(02)00520-1

    Article  CAS  Google Scholar 

  49. J. Chen, L. Zhu, Catalytic degradation of Orange II by UV-Fenton with hydroxyl-Fe-pillared bentonite in water. Chemosphere 65, 1249–1255 (2006). https://doi.org/10.1016/j.chemosphere.2006.04.016

    Article  CAS  Google Scholar 

  50. F. Fu, Y. Xiong, B. Xie, R. Chen, Adsorption of Acid Red 73 on copper dithiocarbamate precipitate-type solid wastes. Chemosphere 66, 1–7 (2007). https://doi.org/10.1016/j.chemosphere.2006.05.054

    Article  CAS  Google Scholar 

  51. V.K. Garg, M. Amita, R. Kumar, R. Gupta, Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes Pigments 63, 243–250 (2004). https://doi.org/10.1016/j.dyepig.2004.03.005

    Article  CAS  Google Scholar 

  52. I.M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dye-containing effluents: a review. Bioresour. Technol. 58, 217–227 (1996). https://doi.org/10.1016/S0960-8524(96)00113-7

    Article  CAS  Google Scholar 

  53. C.I. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58, 179–196 (2003). https://doi.org/10.1016/S0143-7208(03)00064-0

    Article  CAS  Google Scholar 

  54. G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I.M. Banat, R. Marchant, W.F. Smyth, Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 56, 81–87 (2001). https://doi.org/10.1007/s002530000587

    Article  CAS  Google Scholar 

  55. M. Piumetti, F. Freyria, M. Armandi, F. Geobaldo, E. Garrone, B. Bonelli, Degradation of Acid Orange 7 by transition metals containing mesoporous titania in the presence of H2O2 and ascorbic acid. Catal. Struct. React. 33, 10–11 (2013)

    Google Scholar 

  56. M. Piumetti, F.S. Freyria, M. Armandi, G. Saracco, E. Garrone, G.E. Gonzalez, B. Bonelli, Catalytic degradation of Acid Orange 7 by H2O2 as promoted by either bare or V-loaded titania under UV light, in dark conditions, and after incubating the catalysts in ascorbic acid. Catal. Struct. React. 1, 183–191 (2015). https://doi.org/10.1080/2055074X.2015.1105618

    Article  Google Scholar 

  57. F. Freyria, M. Compagnoni, N. Ditaranto, I. Rossetti, M. Piumetti, G. Ramis, B. Bonelli, Pure and Fe-doped mesoporous titania catalyse the oxidation of Acid Orange 7 by H2O2 under different illumination conditions: Fe doping improves photocatalytic activity under simulated solar light. Catalysts 7, 213 (2017). https://doi.org/10.3390/catal7070213

    Article  CAS  Google Scholar 

  58. M. Piumetti, F.S. Freyria, M. Armandi, F. Geobaldo, E. Garrone, B. Bonelli, Fe- and V-doped mesoporous titania prepared by direct synthesis: characterization and role in the oxidation of AO7 by H2O2 in the dark. Catal. Today 227, 71–79 (2014). https://doi.org/10.1016/j.cattod.2013.11.013

    Article  CAS  Google Scholar 

  59. A. Arcoya, J.A. González, N. Travieso, X.L. Seoane, Physicochemical and catalytic properties of a modified natural clinoptilolite. Clay Miner. 29, 123–131 (1994). https://doi.org/10.1180/claymin.1994.029.1.14

    Article  CAS  Google Scholar 

  60. L. Mihaly Cozmuta, A. Mihaly Cozmuta, A. Peter, C. Nicula, E. Bakatula Nsimba, H. Tutu, The influence of pH on the adsorption of lead by Na-clinoptilolite: kinetic and equilibrium studies. Water SA 38, 269–278 (2012). https://doi.org/10.4314/wsa.v38i2.13

    Article  CAS  Google Scholar 

  61. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with imageJ. Biophoton. Int. 11, 36–41 (2004). https://doi.org/10.1201/9781420005615.ax4

    Article  Google Scholar 

  62. S. Brandani, E. Mangano, H. Ahn, D. Friedrich, X. Hu, Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 20, 121–135 (2013). https://doi.org/10.1007/s10450-013-9554-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Zeolado Company (Greece) that provided the clinoptilolite for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Piumetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dosa, M., Piumetti, M., Davarpanah, E., Moncaglieri, G., Bensaid, S., Fino, D. (2021). Natural Zeolites as Sustainable Materials for Environmental Processes. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-58934-9_13

Download citation

Publish with us

Policies and ethics