Skip to main content

Introduction to Landscapes and Landforms of Iran

  • Chapter
  • First Online:
Desert Landscapes and Landforms of Iran

Part of the book series: Geography of the Physical Environment ((GEOPHY))

  • 410 Accesses

Abstract

Iran as a country located in the southwest Asia is mainly covered by arid, semiarid, and hyper-arid climatic conditions. The country has high geological, climatologic, biologic, and cultural diversities. For example, though it is located in the hot spot of the world in the Lut Desert, several parts of highlands in Alborz and Zagros Mountains experience below zero temperature in the summer. Sedimentary-structural units and climate conditions configured main landforms and landscapes of Iran. Two mountainous areas of Alborz and Zagros are formed by the main topographic components of the country. These mountains have inevitable effects on climate, hydrology, and even history and cultural aspects. The six first-order and thirty second-order watersheds with different types of rivers and aquifers supply surface and ground water for any human activities. Paleoenvironmental studies show the effects of complicated relationship between human activities and environmental functions during the history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equilibrium Line Altitude.

References

  • Aghanabati A (2004) Geology of Iran, Iran′s Geology institution Publication, Tehran (in Persian)

    Google Scholar 

  • Alavipanah SK, Nezammahalleh MA (2013) Relationship of salt classification with distance to shoreline and elevation, case study Lake Urmia, Iran. J Environ Treat Tech 1(1):35–37

    Google Scholar 

  • Alijani B (2003) Climate of Iran. Payame Noor University Press, Tehran (in Persian)

    Google Scholar 

  • Allenbach P (1966) Geologie und petrographie des Damavand und seiner Umgebung (Zentral Elburz), Iran., Geol. Mitt. Geol. Inst. ETH Univ. Zurich, n. s., 63, 144p

    Google Scholar 

  • Beaumont P (1972) Alluvial fans along the foothills of the Elburz mountains, Iran. Palaeogeogr Palaeoclimatol Palaeoecol 12:251–273

    Article  Google Scholar 

  • Berberian M (2014) Earthquakes and coseismic surface faulting on the Iranian Plateau, A historical, social and physical approach, Part II: dynamic phenomena associated with the earthquakes on the Iranian Plateau. Dev Earth Surf Proc 17:149

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18(2):210–265

    Article  Google Scholar 

  • Berberian M (1976) Seismotectonic map of Iran (1:2 500 000). Geological Survey of Iran, Tehran

    Google Scholar 

  • Blanford WT (1873) On the nature and probable origin of the superficial deposits in the valleys and deserts of central Persia. Quar J Geol Soc London Proc Geol Soc 14:492–501

    Google Scholar 

  • Bobek H (1937) Die Rolle der Eiszeit in Nordwest Iran. Zeitschrift für Gletscherkunde 25:130–183

    Google Scholar 

  • Bobek H (1963) Nature and implications of Quaternary climatic changes in Iran. In: Proceedings of symposium on changes of climate with special reference to and zones, Rome, UNESCO, 1961

    Google Scholar 

  • Darvishzadeh A (1991) Geology of Iran. Danesh Emrouz publisher, Tehran (in Persian)

    Google Scholar 

  • Darvishzadeh A, Mohammadi M (1995) Geology of Iran. Payame Noor Press, Tehran (in Persian)

    Google Scholar 

  • Eftekharnejad J (1980) Tectonic classification of Iran in relation to depositional basins. J Iran Petrol Soc 82:19–28 (in Persian)

    Google Scholar 

  • Ferrigno JG (1988) Glaciers of the Middle East and Africa e glaciers of Iran. In: Williams RS Ferrigno JG (eds) Satellite atlas of glaciers of the world, pp 31–47, 1386-G-2

    Google Scholar 

  • Frechen M, Kehl M, Rolf C, Sarvati R, Skowronek A (2009) Loess chronology of the Caspian lowland in Northern Iran. Quat Int 198:220–233

    Article  Google Scholar 

  • Ghadimi M, Nezammahalleh MA (2015) Construction of a causeway bridge across the Lake Urmia and its influence on the drying trend of the lake. Int Arch Photogramm Remote Sens Spatial Inf Sci XL-1/W5:23–25

    Google Scholar 

  • Ghaemi H, Zarin A, Khoshakhlagh F (2013) Arid land climatology. Iran University Press, Tehran (in Persian)

    Google Scholar 

  • Ghahroudi Tali M, Abdoli E, Nezammahalleh MA (2013) Geomorphological and sedimentological evidence of alpine glaciers in the Zagros Mountains, Dinevar, Iran. J Tethys 1:85–95

    Google Scholar 

  • Ghorbani M (2013) The economic geology of Iran, mineral deposits and natural resources. Springer, Dordrecht

    Book  Google Scholar 

  • Ghorbani M (2014) Geology of Iran1, tectonic and structural geology of Iran. Aryan Zamin Press, Tehran (in Persian)

    Google Scholar 

  • Gillmore GK, Stevense T, Buykeart JP, Coningham RAE, Batt C, Fazeli H, Young R, Maghsoudi M (2011) Geoarchaeology and the value of multidisciplinary palaeoenvironmental approaches: a case study from the Tehran Plain, Iran. Geol Soc 352:49–67

    Article  Google Scholar 

  • Hagedorn H, Haars W, Busche D, Grunert J (1978) Some geomorphological observations from the Shir Kuh Mountains area. J Assoc Iran Geogr (Geography) 1:10–15

    Google Scholar 

  • Heyvaert VMA, Baeteman C (2007) Holocene sedimentary evolution and palaeocoast lines of the lower Khuzestan Plain (southwest Iran). Mar Geol 242(1–3):83–108

    Article  Google Scholar 

  • Hosseinzadeh R (1997) 120-day winds of Sistan. Geogr Res 4:102–127 (in Persian)

    Google Scholar 

  • Hutchinson GE, Cowgill UM (1963) Chemical examination of a core from Lake Zeribar, Iran. Science 140(3562):67–69

    Google Scholar 

  • Jadari Eyvazi J (1995) Geomorphology of Iran. Payame Noor Publisher, Tehran (in Persian)

    Google Scholar 

  • Kakroodi AA, Kroonenberg SB, Hoogendoorn RM, Mohammd Khani H, Yamani M, Ghassemi MR, Lahijani HAK (2012) Rapid Holocene sea level changes along the Iranian Caspian coast. Quat Int 263:93–103

    Article  Google Scholar 

  • Kakroodi AA, Leroy SAG, Kroonenberg SB, Lahijani HAK, Alimohammadian H, Boomer I, Goorabi A (2015) Late Pleistocene and Holocene sea-level change and coastal paleoenvironment evolution along the Iranian Caspian shore. Mar Geol 361:111–125

    Article  Google Scholar 

  • Karimi A, Frechen M, Khademi H, Kehl M, Jalalian A (2011) Chronostratigraphy of loess deposits in northeast Iran. Quat Int 234:124–132

    Article  Google Scholar 

  • Kehl M (2009) Quaternary climate change in Iran—the state of knowledge. Erdkunde 1:1–17

    Article  Google Scholar 

  • Kehl M, Frechen M, Skowronek A (2005) Paleosols derived from loess and loesslike sediments in the Basin of Persepolis, Southern Iran. Quat Int 140–141:135–149

    Article  Google Scholar 

  • Kennett DJ, Kennett JP (2007) Influence of Holocene marine transgression and climate change on cultural evolution in southern Mesopotamia. In: Anderson DG, Maasch KI, Sandweiss DH (eds) Climate change and cultural dynamics. A global perspective on Mid-Holocene transitions. Elsevier, Amsterdam, p 575

    Google Scholar 

  • Khormali F, Kehl M (2011) Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. Quat Int 234:109–123

    Article  Google Scholar 

  • Khosrotehrani K (1988) Stratigraphy of Iran and type section of formation. University of Tehran Press, Tehran (in Persian)

    Google Scholar 

  • Khosrotehrani K, Darvishzadeh A (1984) Geology of Iran. Ministry of Education, Tehran (in Persian)

    Google Scholar 

  • Kourampas N, Simpson IA, Fazeli Nashli H, Manuel M, Coningham R (2013) Sediments, soils and livelihood in a late neolithic village on the Iranian Plateau: Tepe Sialk. In: Matthews R, Fazeli Nashli H (eds) The neolithisation of Iran: the formation of new societies. Oxbow Books, p 305

    Google Scholar 

  • Krinsley DB (1970) A geomophological and paleoclimatological study of the playas of Iran. United States Air Force, Bedford MA, USA

    Google Scholar 

  • Kuhle M (2007) The Pleistocene glaciation (LGP and pre-LGP, pre-LGM) of SE Iranian Mountains exemplified by the Kuh-i-Jupar, Kuh-i-Lalezar and Kuh-i-Hezar massifs in the Zagros. Polarforschung 77(2–3):71–88

    Google Scholar 

  • Leroy SA, Kakroodi AA, Kroonenberg SB, Lahijani HAK, Alimohammadian H, Nigarov A (2013) Holocene vegetation history and sea level changes in the SE corner of the Caspian Sea: relevance to SW Asia climate. Quat Sci Rev 70:28–47

    Article  Google Scholar 

  • Leroy SAG, Lahijani HAK, Djamali M, Naqinezhad A, Moghadam MV, Arpe K, Shah-Hosseini M, Hosseindoust M, Miller ChS, Tavakoli V, Habibi P, Naderi Beni M (2011) Late Little Ice Age palaeoenvironmental records from the Anzali and Amirkola lagoons (south CS): vegetation and sea level changes. Palaeogeogr Palaeoclimatol Palaeoecol 302:415–434

    Article  Google Scholar 

  • Maghsoudi M, Fazeli Nashlie H, Azizi G, Gillmor G, Schmidt A (2012) Geoarchaeology of alluvial fans: a case study from Jajroud and Hajiarab alluvial Fans in Iran. Phys Geogr Res Quar 44(4):1–22 (in Persian)

    Google Scholar 

  • Maghsoudi M, Kamrani Dalir H, Hashemi M (2019) Effect of environmental factors on settlement pattern of archaeological sites around the Dasht-e Kavir (Great Kavir). Quat J Iran, in press (in Persian)

    Google Scholar 

  • Maghsoudi M, Simpson IA, Kourampas N, Fazeli Nashli H (2014) Archaeological sediments from settlement mounds of the Sagzabad cluster, central Iran: Human-induce deposition on an arid alluvial Plain. Quat Int 324:67–73

    Article  Google Scholar 

  • Mahmoudi F (1988) Geomorphological evolution in Quaternary in Iran. Phys Geogr Res Quar 23:5–43 (in Persian)

    Google Scholar 

  • Mahmoudi F (1993) Geomorphological units of Iran, University of Tehran, Unpublished Report (in Persian)

    Google Scholar 

  • Mahmoudi F (2002) Geographical distribution of ergs in Iran. Research Institute of Forests and Rangelands, Tehran (in Persian)

    Google Scholar 

  • Masoodian SA (2012) Climatology of Iran. Shariyeh Tous press, Tehran (in Persian)

    Google Scholar 

  • Masoodian SA (2014) Sistana’s 120 days wind. J Appl Climatol 1(1):37–46

    Google Scholar 

  • Masoodian SA, Kaviani MR (2012) Climatology of Iran. University of Isfahan press, Isfahan (in Persian)

    Google Scholar 

  • Messerli B (1967) Die eiszeitliche und die gegenwartige Vergletscherung in Mittelmeerraum. Geographicae Helvetiae 22:105–228

    Article  Google Scholar 

  • Ministry of energy of Iran (2012) Classification and coding of watershed of Iran (in Persian)

    Google Scholar 

  • Mirzamostafa N, Khalili D, Nazemossadat MJ, Hadarbadi GR (2008) Hourly prediction of speed and direction of erodible winds using three hourly data (A case study: Zabol region). Iran J Range Desert Res 15(1):69–85

    Google Scholar 

  • Mofidi A, Hamidianpour M, Saligheh M, Alijani B (2014) Determination of the onset, withdrawal and duration of Sistan wind using a change point approach. Geogr Environ Hazards 8:87–112 (in Persian)

    Google Scholar 

  • Movahed Danesh AA (1993) Hydrology of Iran. Samt Press, Tehran (in Persian)

    Google Scholar 

  • Nabavi MH (1976) Introduction to geology of Iran. Geological Survey of Iran (in Persian)

    Google Scholar 

  • Naderi Beni A, Lahijani H, Mousavi Harami R, Arpe K, Leroy SAG, Marriner N, Berberian M, Andrieu-Ponel V, Djamali M, Mahboubi A, Reimer PJ (2013) Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea. Clim Past 9:1645–1665

    Article  Google Scholar 

  • National Cartographic center (2004) 1:2500000 scale geomorphology map of Iran (in Persian)

    Google Scholar 

  • Pedrami M (1982) Pleistocene glaciations and paleoclimate in Iran. Geological Survey of Iran, Tehran (in Persian)

    Google Scholar 

  • Rahimi O (2018) Paleoenvironment reconstruction of west of Kurdistan, using speleothem and glacial landforms in a late Quaternary. Dissertation for PhD, University of Mohaghegh Ardabili (in Persian)

    Google Scholar 

  • Range and Watershed Management Organization (2010) shape file of isotherm of Iran

    Google Scholar 

  • Research institute of forests and rangelands (2008) Strategic plan for desert. Tehran (in Persian)

    Google Scholar 

  • Schweizer G (1975) Untersuchungen zur Physiogeographie von Ost-Untersuchungen zur Physiogeographie von Ost-anatolien und Nordwestiran. Geomorphologische, klima- und hydrogeographische Studien im Vansee- und Rezaiyehsee-Gebiet. Tübinger Geogr. Stud. 60, Tübin- gen

    Google Scholar 

  • Seif A (2015) Equilibrium-line altitudes of Late Quaternary glaciers in the Oshtoran kuh Mountain, Iran. Quat Int 374:126–143

    Article  Google Scholar 

  • Seif A, Ebrahimi B (2014) Combined use of GIS and experimental functions for the morphometric study of glacial cirques, Zard kuh Mountain, Iran. Quat Int 353:236–249

    Article  Google Scholar 

  • Sharifi A, Shah-Hosseini M, Pourmand A, Esfahaninejad M, Haeri-Ardakani O (2018) The vanishing of Urmia Lake: a geolimnological perspective on the hydrological imbalance of the world’s second largest hypersaline lake. In: Gribble G (ed) The handbook of environmental chemistry. Springer, Berlin, pp 1–38

    Google Scholar 

  • Shufeng Y, Chengzao J, Hanlin C, Guoqi W, Xiaogan C, Dong J, Ancheng X, Shaojie G (2002) Tectonic evolution of Tethyan tectonic field, formation of Northern Margin basin and explorative perspective of natural gas in Tarim Basin. Chin Sci Bull 47:34–41

    Article  Google Scholar 

  • Snyder JA, Wasylik K, Fritz SC, Wright HE Jr (2001) Diatom-based conductivity reconstruction and palaeoclimatic interpretation of a 40-ka record from Lake Zeribar, Iran. Holocene 11:737–745

    Article  Google Scholar 

  • Statistical Center of Iran (2016a (Data of administrative division of Iran. https://www.amar.org.ir

  • Statistical center of Iran (2016b) Statistical year book of Iran. https://www.amar.org.ir

  • Stevens LR, Wright HE Jr, Ito E (2001) Proposed changes in seasonality of climate during the Late-glacial and Holocene at Lake Zeribar, Iran. Holocene 11(6):747–755

    Article  Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. Am Asso Petrol Geol Bull 52:1229–1258

    Google Scholar 

  • Stöcklin J, Nabavi MH (1973) Tectonic map of Iran. 1:2500,000. Geol Sur Iran

    Google Scholar 

  • Thomas DSG, Bateman M, Mehrshahi D, O’Hara SL (1997) Development and environmental significance of an Eolian sand ramp of last-glacial age, Central Iran. Quat Res 48:155–161

    Article  Google Scholar 

  • Van Zeist W, Bottema S (1977) Palynological investigations in western Iran. Palaeohistoria 19:19–85

    Google Scholar 

  • Van Zeist W, Wright HE Jr (1963) Preliminary pollen studies at Lake Zeribar, Zagros Mountains, Southwestern Iran. Science 140:65–67

    Article  Google Scholar 

  • Vita-FinZi C (1969) Late Quaternary alluvial chronology of Iran. Geol Rundsch 58:951–973

    Article  Google Scholar 

  • Walker RT, Fattahi M (2011) A framework of holocene and late pleistocene environmental change in eastern Iran inferred from the dating of periods of alluvial fan abandonment, river terracing, and lake deposition. Quat Sci Rev 30:1257–1272

    Article  Google Scholar 

  • Wasylikowa K (1967) Late Quaternary plant macrofossils from Lake Zeribar, western Iran. Rev Palaeobot Palynol 2:313–318

    Article  Google Scholar 

  • Wasylikowa K (2005) Paleoecology of lake Zeribar, Iran, in the Pleniglacial, Lateglacial and Holocene, reconstructed from plant macrofossils. Holocene 15:720–735

    Article  Google Scholar 

  • Wasylikowa K, Walanus A (2004) Timing of aquatic and marsh-plant successions in different parts of Lake Zeribar, Iran, during the Late Glacial and Holocene. Acta Palaeobotanica 44:129–140

    Google Scholar 

  • Wright HE (1962) Pleistocene glaciations in Kurdistan. Eiszeit Gegenw 12:131–164

    Google Scholar 

  • Yamani M (2007) Geomorphology of Zard kuh glaciers. Geogr Res (Iran) 59:125–139 (in Persian)

    Google Scholar 

  • Yamani M (2016) Geomorphological maps, techniques & methods. University of Tehran press, Tehran (in Persian)

    Google Scholar 

  • Zolfaghari H, Masoompour J, Yeganefar M, Akbary M (2016) Studying spatial and temporal changes of aridity in Iran. Arab J Geosci 9(5):2–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Maghsoudi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maghsoudi, M. (2021). Introduction to Landscapes and Landforms of Iran. In: Desert Landscapes and Landforms of Iran. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-58912-7_1

Download citation

Publish with us

Policies and ethics