Skip to main content

Self-Stabilizing Domination Algorithms

  • Chapter
  • First Online:
Structures of Domination in Graphs

Part of the book series: Developments in Mathematics ((DEVM,volume 66))

Abstract

In this chapter, we introduce the self-stabilizing algorithm model and present several definitive examples that illustrate the simplicity and elegance of this algorithmic paradigm when applied to problems related to dominating sets in graphs. In this paradigm, a distributed computing system or network is modeled by an undirected graph Gā€‰=ā€‰(V, E), where Vā€‰ is its set of nodes, or processors, and E is its set of edges, or communication links. Each node has only a local view of the system, namely its immediate neighbors. Thus, it has no knowledge of the network, its size, or how it is structured. Every node executes the same algorithm simultaneously, and in a finite amount of time, often O(n), the system converges, or stabilizes, to a global, stable state, satisfying some desired property. For example, the states of the nodes in the given graph G can define a maximal independent set, a maximal matching, a minimal dominating set, a minimal total dominating set, or even two disjoint minimal dominating sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Aharoni, E.C. Milner, K. Prikry, Unfriendly partitions of a graph. J. Combin. Theory Ser. B 50(1), 1ā€“10 (1990)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Y. Asada, M. Inoue, An efficient silent self-stabilizing algorithm for 1-maximal matching in anonymous networks, in WALCOM: Algorithms and Computation. Lecture Notes in Computer Science, vol. 8973 (2015), pp. 187ā€“198

    Google ScholarĀ 

  3. Y. Belhoul, S. Yahiaoui, H. Kheddouci, Efficient self-stabilizing algorithms for minimal total k-dominating sets in graphs. Inform. Process. Lett. 114(7), 339ā€“343 (2014)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. J.R.S. Blair, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, Self-stabilizing maximum matchings. Congr. Numer. 153, 151ā€“159 (2001)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. A.V. Borodin, A.V. Kostochka, On an upper bound of a graphā€™s chromatic number, depending on the graphā€™s degree and density. J. Combin. Theory Ser. B 23, 247ā€“250 (1977)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. W.Y. Chiu, C. Chen, Linear-time self-stabilizing algorithms for minimal domination in graph, in Proceedings of the International Workshop on Combinatorial Algorithms, IWOCA 2013. Lecture Notes in Computer Science, vol. 8288 (2013), pp. 115ā€“126

    Google ScholarĀ 

  7. W.Y. Chiu, C. Chen, S.-Y. Tsai, A 4n-move self-stabilizing algorithm for the minimal dominating set problem using an unfair distributed demon. Inform. Process. Lett. 114(10), 515ā€“518 (2014)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  8. J. Cohen, J. LefĆ©vre, K. MaĆ¢mra, L. Pilard, D. Sohier, A self-stabilizing algorithm for maximal matching in anonymous networks. Parallel Process. Lett. 26(4), 1650016 (2016)

    Google ScholarĀ 

  9. J. Cohen, K. MaĆ¢mra, G. Manoussakis, L. Pilard, Polynomial self-stabilizing maximum matching algorithm with approximation ratio 2āˆ•3. 20th International Conference on Principles of Distributed Systems, Art. No. 11, 17 pp., LIPIcs. Leibniz Int. Proc. Inform., 70, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017

    Google ScholarĀ 

  10. A.K. Datta, L. Larmore, T. Masuzawa, Maximum matching for anonymous trees with constant space per process. 19th International Conference on Principles of Distributed Systems, Art. No. 16, 16 pp., LIPIcs. Leibniz Int. Proc. Inform., 46, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016

    Google ScholarĀ 

  11. F. Delbot, C. Laforest, S. Rovedakis, Self-stabilizing algorithms for connected vertex cover and clique decomposition problems, in Principles of Distributed Systems. Lecture Notes in Computer Science, vol. 8878 (2014), pp. 307ā€“322

    Google ScholarĀ 

  12. E.W. Dijkstra, Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643ā€“644 (1974)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  13. E.W. Dijkstra, A belated proof of self-stabilization. J. Distributed Comput. 1, 5ā€“6 (1986)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  14. Y. Ding, J.Z. Wang, P.K. Srimani, New self-stabilizing algorithms for minimal weakly connected dominating sets. Internat. J. Found. Comput. Sci. 26(2), 229ā€“240 (2015)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. Y. Ding, J.Z. Wang, P.K. Srimani, Self-stabilizing algorithm for minimal dominating set with safe convergence in an arbitrary graph. Parallel Process. Lett. 25(4), 1550011 (2015)

    Google ScholarĀ 

  16. S. Dolev, Self-Stabilization (MIT Press, Cambridge, 2000)

    BookĀ  MATHĀ  Google ScholarĀ 

  17. M. Gairing, R.M. Geist, S.T. Hedetniemi, P. Kristiansen, A self-stabilizing algorithm for maximal 2-packing. Nordic J. Comput. 11(1), 1ā€“11 (2004)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. M. Gairing, W. Goddard, S.T. Hedetniemi, D.P. Jacobs, Self-stabilizing maximal k-dependent sets in linear time. Parallel Process. Lett. 14(1), 75ā€“82 (2004)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  19. M. Gairing, W. Goddard, S.T. Hedetniemi, P. Kristiansen, A.A. McRae, Distance-two information in self-stabilizing algorithms. Parallel Process. Lett. 14, 387ā€“398 (2004)

    MathSciNetĀ  Google ScholarĀ 

  20. M. Gairing, S.T. Hedetniemi, P. Kristiansen, A.A. McRae, Self-stabilizing algorithms for {k}-domination, in Proceedings of the Sixth Symposium on Self-Stabilization (SSS 2003), San Francisco. Lecture Notes in Computer Science, vol. 2074 (Springer, Berlin, 2003), pp. 49ā€“60

    Google ScholarĀ 

  21. W. Goddard, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, A self-stabilizing distributed algorithm for minimal total domination in an arbitrary system graph, in Proceedings of the Eighth IPDPS Workshop on Formal Methods for Parallel Programming: Theory and Applications, Nice (2003)

    Google ScholarĀ 

  22. W. Goddard, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks, in Proceedings of the Fifth IPDPS Workshop on Advances in Parallel and Distributed Computational Models, Nice (2003)

    Google ScholarĀ 

  23. W. Goddard, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, A robust distributed generalized matching protocol that stabilizes in linear time, in Proceedings of the ICDCS International Workshop on Mobile Distributed Computing (MDC03), Rhode Island (2003)

    Google ScholarĀ 

  24. W. Goddard, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, Self-stabilizing distributed algorithm for strong matching in a system graph, in HiPC 2003, ed. by T.M. Pinkston, V.K. Prasanna, Lecture Notes in Computer Science, vol. 2913 (Springer, Berlin, 2003), pp. 66ā€“73

    Google ScholarĀ 

  25. W. Goddard, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, Self-stabilizing global optimization algorithms for large network graphs. Internat. J. Dist. Sensor Netw. 1, 329ā€“344 (2005)

    ArticleĀ  Google ScholarĀ 

  26. W. Goddard, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, Z. Xu, Self-stabilizing graph protocols. Parallel Process. Lett. 18(1), 189ā€“199 (2008)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  27. W. Goddard, S. Hedetniemi, D. Jacobs, V. Trevisan, Distance-k information in self-stabilizing algorithms, in 13th Colloquium on Structural Information and Communication Running Time (SIROCCO), (Chester, UK, 2006). Lecture Notes in Computer Science, vol. 4056 (2006), pp. 349ā€“356

    ArticleĀ  MATHĀ  Google ScholarĀ 

  28. W. Goddard, S.T. Hedetniemi, D.P. Jacobs, V. Trevisan, Distance-k knowledge in self-stabilizing algorithms. Theoret. Comput. Sci. 399, 118ā€“127 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  29. W. Goddard, S.T. Hedetniemi, Z. Shi, An anonymous self-stabilizing algorithm for 1-maximal matching in trees, in Proceedings of the 2006 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTAā€6), Las Vegas, vol. II (2006), pp. 797ā€“803

    Google ScholarĀ 

  30. W. Goddard, P.K. Srimani, Anonymous self-stabilizing distributed algorithms for connected dominating set in a network graph, in Proceedings of the International Multi-Conference Complexity, Informatics and Cybernetics: IMCIC 2010

    Google ScholarĀ 

  31. N. Guellati, H. Kheddouci, A survey on self-stabilizing algorithms for independence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput. 70(4), 406ā€“415 (2009)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  32. S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, Self-stabilizing algorithms for minimal dominating sets and maximal independent sets. Comput. Math. Appl. 46, 805ā€“811 (2003)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  33. S.M. Hedetniemi, S.T. Hedetniemi, H. Jiang, K.E. Kennedy, A. McRae, A self-stabilizing algorithm for optimally efficient sets in graphs. Inform. Process. Lett. 112(16), 621ā€“623 (2012)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  34. S.M. Hedetniemi, S.T. Hedetniemi, K.E. Kennedy, A. A. McRae, Self-stabilizing algorithms for unfriendly partitions into two disjoint dominating sets. Parallel Process. Lett. 23(1), 1350001 (2013)

    Google ScholarĀ 

  35. S.T. Hedetniemi, D.P. Jacobs, K.E. Kennedy, Linear-time self-stabilizing algorithms for disjoint independent sets. Comput. J. 56(11), 1381ā€“1387 (2013)

    ArticleĀ  Google ScholarĀ 

  36. S.T. Hedetniemi, D.P. Jacobs, K.E. Kennedy, A theorem of Ore and self-stabilizing algorithms for disjoint minimal dominating sets. Theoret. Comput. Sci. 593, 132ā€“138 (2015)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  37. S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, Maximal matching stabilizes in time O(m). Inform. Process. Lett. 80, 221ā€“223 (2001)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  38. S.-C. Hsu, S.-T. Huang, A self-stabilizing algorithm for maximal matching. Inform. Process. Lett. 43, 77ā€“81 (1992)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  39. T.-C. Huang, C.-Y. Chen, C.-P. Wang, A linear-time self-stabilizing algorithm for the minimal 2-dominating set problem in general networks. JISE J. Inf. Sci. Eng. 24(1), 175ā€“187 (2008)

    MathSciNetĀ  Google ScholarĀ 

  40. T.-C. Huang, J.-C. Lin, C.-Y. Chen, C.-P. Wang, A self-stabilizing algorithm for finding a minimal 2-dominating set assuming the distributed demon model. Comput. Math. Appl. 54(3), 350ā€“356 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  41. M. Ikeda, S. Kamei, H. Kakugawa, A space-time optimal self-stabilizing algorithm for the maximal independent set problem, in PDCAT Proceedings of the Third International Conference on Parallel and Distributed Computing, Applications and Technologies (2002), pp. 70ā€“74

    Google ScholarĀ 

  42. M. Inoue, F. Ooshita, S. Tixeuil, An efficient silent self-stabilizing 1-maximal matching algorithm under distributed scheduler without global identifiers, in Stabilization, Safety and Security of Distributed Systems. Lecture Notes in Computer Science, vol. 10083 (2016), pp. 195ā€“212

    Google ScholarĀ 

  43. M. Inoue, F. Ooshita, S. Tixeuil, An efficient silent self-stabilizing 1-maximal matching algorithm under distributed scheduler for arbitrary networks, in Stabilization, Safety and Security of Distributed Systems. Lecture Notes in Computer Science, vol. 10616 (2017), pp. 93ā€“108

    Google ScholarĀ 

  44. C. Johnen, Fast, silent self-stabilizing distance-k independent dominating set construction. Inform. Process. Lett. 114(10), 551ā€“555 (2014)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  45. C. Johnen, Memory efficient self-stabilizing distance-k independent dominating set construction, in Networked Systems. Lecture Notes in Computer Science, vol. 9466 (2015), pp. 354ā€“366

    Google ScholarĀ 

  46. S. Kamei, H. Kakugawa, A self-stabilizing distributed approximation algorithm for the minimum connected dominating set. Int. J. Found. Comput. Sci. 21(3), 459ā€“476 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  47. S. Kamei, H. Kakugawa, A self-stabilizing 6-approximation for the minimum connected dominating set with safe convergence in unit disk graphs. Theoret. Comput. Sci. 428, 80ā€“90 (2012)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  48. S. Kamei, H. Kakugawa, S. Devismes, S. Tixeuil, A self-stabilizing 3-approximation for the maximum leaf spanning tree problem in arbitrary networks. J. Comb. Optim. 25(3), 430ā€“459 (2013)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  49. P. Kristiansen, New Results on the Domination Chain, Graph Homomorphisms, Alliancesand Self-stabilizing Algorithms. Ph.D. Thesis, Department of Informatics, University of Bergen, 2002

    Google ScholarĀ 

  50. J.-C. Lin, T.-C. Huang, C.-P. Wang, C.-Y. Chen, A self-stabilizing algorithm for finding a minimal distance-2 dominating set in distributed systems. JISE J. Inf. Sci. Eng. 24(6), 1709ā€“1718 (2008)

    MathSciNetĀ  Google ScholarĀ 

  51. F. Manne, M. Mjelde, A memory efficient self-stabilizing algorithm for maximal k-packing, in Eighth International Symposium Stabilization, Safety and Security of Distributed Systems, SSS (November 2006, Dallas), ed. by A.K. Datta, M. Gradinariu. Lecture Notes in Computer Science, vol. 4280 (2006)

    Google ScholarĀ 

  52. F. Manne, M. Mjelde, L. Pilard, S. Tixeuil, A new self-stabilizing maximal matching algorithm, in Structural Information and Communication Complexity. Lecture Notes in Computer Science, vol. 4474 (2007), pp. 96ā€“108

    Google ScholarĀ 

  53. F. Manne, M. Mjelde, L. Pilard, S. Tixeuil, A new self-stabilizing maximal matching algorithm. Theoret. Comput. Sci. 410(14), 1336ā€“1345 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  54. F. Manne, M. Mjelde, L. Pilard, S. Tixeuil, A self-stabilizing 2āˆ•3-approximation algorithm for the maximum matching problem. Theoret. Comput. Sci. 412(40), 5515ā€“5526 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  55. B. Neggazi, N. Guellati, M. Haddad, H. Kheddouci, Efficient self-stabilizing algorithm for independent strong dominating sets in arbitrary graphs. Int. J. Found. Comput. Sci. 26(6), 751ā€“768 (2015)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  56. O. Ore, Theory of Graphs. American Mathematical Society Colloquium Publications (1962)

    Google ScholarĀ 

  57. S. Shelah, E.C. Milner, Graphs with no unfriendly partitions, in A Tribute to Paul Erdƶs, ed. by A. Baker, B. BollobĆ”s, A. Hajnal (Cambridge University Press, Cambridge, 1990), pp. 373ā€“384

    ChapterĀ  Google ScholarĀ 

  58. Z. Shi, A self-stabilizing algorithm to maximal 2-packing with improved complexity. Inform. Process. Lett. 112(13), 525ā€“531 (2012)

    Google ScholarĀ 

  59. S. Shukla, D.J. Rosenkrantz, S.S. Ravi, Observations on self-stabilizing graph algorithms for anonymous networks, in Proceedings of the Second Workshop on Self-Stabilizing Systems (1995), pp. 7.1ā€“7.15

    Google ScholarĀ 

  60. P.K. Srimani, Self-stabilizing minimal global offensive alliance algorithm with safe convergence in an arbitrary graph, in Theory and Applications of Models of Computation, Lecture Notes in Computer Science, vol. 8402 (2014), pp. 366ā€“377

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  61. G. Tel, Maximal matching stabilizes in quadratic time. Inform. Process. Lett. 49, 271ā€“272 (1994)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  62. J.A.Trejo-SĆ”nchez, J.A. FernĆ”ndez-Zepeda, J.C. RamĆ­rez-Pacheco, A self-stabilizing algorithm for a maximal 2-packing in a cactus graph under any scheduler. Int. J. Found. Comput. Sci. 28(8), 1021ā€“1045 (2017)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  63. V. Turau, Linear self-stabilizing algorithms for the independent and dominating set problems using an unfair distributed scheduler. Inform. Process. Lett. 103(3), 88ā€“93 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  64. V. Turau, Efficient transformation of distance-2 self-stabilizing algorithms. J. Parallel Distrib. Comput. 72, 603ā€“612 (2012)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  65. V. Turau, Self-stabilizing vertex cover in anonymous networks with optimal approximation ratio. Parallel Process. Lett. 20(2), 173ā€“186 (2010)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  66. V. Turau, Self-stabilizing algorithms for efficient sets of graphs and trees. Inform. Process. Lett. 113(19ā€“21), 771ā€“776 (2013)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  67. V. Turau, B. Hauck, A self-stabilizing algorithm for constructing weakly connected minimal dominating sets. Inform. Process. Lett. 109(14), 763ā€“767 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  68. V. Turau, B. Hauck, A new analysis of a self-stabilizing maximum weight matching algorithm with approximation ratio 2. Theoret. Comput. Sci. 412(40), 5527ā€“5540 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  69. V. Turau, B. Hauck, A fault-containing self-stabilizing \((3 - \frac {2}{\Delta + 1})\)-approximation algorithm for vertex cover in anonymous networks. Theoret. Comput. Sci. 412(33), 4361ā€“4371 (2011)

    Google ScholarĀ 

  70. Z. Xu, Self-stabilizing Protocols for Distributed Systems. Ph.D. thesis, Clemson University, 2002

    Google ScholarĀ 

  71. Z. Xu, S.T. Hedetniemi, W. Goddard, P.K. Srimani, A synchronous self-stabilizing minimal dominating protocol in an arbitrary network graph, in Proceedings of the Fifth International Workshop on Distributed Computing (IWDC2003). Lecture Notes in Computer Science, vol. 2918 (2003), pp. 26ā€“32

    Google ScholarĀ 

  72. S. Yahiaoui, Y. Belhoul, M. Haddad, H. Kheddouci, Self-stabilizing algorithms for minimal global powerful alliance sets in graphs. Inform. Process. Lett. 113(10ā€“11), 365ā€“370 (2013)

    Google ScholarĀ 

Download references

Acknowledgment

The author would like to thank the reviewers for the time it took them to carefully read this chapter and for their many suggestions to improve its presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Hedetniemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hedetniemi, S.T. (2021). Self-Stabilizing Domination Algorithms. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds) Structures of Domination in Graphs . Developments in Mathematics, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-030-58892-2_16

Download citation

Publish with us

Policies and ethics