Skip to main content

Binary Classification of Proteins by a Machine Learning Approach

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

In this work we present a system based on a Deep Learning approach, by using a Convolutional Neural Network, capable of classifying protein chains of amino acids based on the protein description contained in the Protein Data Bank. Each protein is fully described in its chemical-physical-geometric properties in a file in XML format. The aim of the work is to design a prototypical Deep Learning machinery for the collection and management of a huge amount of data and to validate it through its application to the classification of a sequences of amino acids. We envisage applying the described approach to more general classification problems in biomolecules, related to structural properties and similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  2. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  3. Liu, X.: Deep recurrent neural network for protein function prediction from sequence (2017). arXiv: 1701.08318 [q-bio.QM]

  4. Sze, V., et al.: Hardware for machine learning: challenges and opportunities. In: IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8. IEEE (2017)

    Google Scholar 

  5. Zhang, C., et al.: Optimizing FPGA-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161–170 (2015)

    Google Scholar 

  6. Biondi, G., Franzoni, V., Gervasi, O., Perri, D.: An approach for improving automatic mouth emotion recognition. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 649–664. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_48

    Chapter  Google Scholar 

  7. Perri, D., Sylos Labini, P., Gervasi, O., Tasso, S., Vella, F.: Towards a learning-based performance modeling for accelerating deep neural networks. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 665–676. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_49

    Chapter  Google Scholar 

  8. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). http://www.rcsb.org/

    Article  Google Scholar 

  9. Rubinstein, R.Y., Kroese, D.P.: The Cross-entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer, New York (2013)

    MATH  Google Scholar 

  10. De Boer, P.-T., et al.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005). https://doi.org/10.1007/s10479-005-5724-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  12. Visa, S., et al.: Confusion matrix-based feature selection. MAICS 710, 120–127 (2011)

    Google Scholar 

  13. Aquilanti, V., Lombardi, A., Yurtsever, E.: Global view of classical clusters: the hyperspherical approach to structure and dynamics. Phys. Chem. Chem. Phys. 4, 5040–5051 (2002)

    Google Scholar 

Download references

Acknowledgments

A.L. and N.F.L. thank the Dipartimento di Chimica, Biologia e Biotecnologie dell’Università di Perugia (FRB, Fondo per la Ricerca di Base 2017) and the Italian MIUR and the University of Perugia for the financial support of the AMIS project through the program “Dipartimenti di Eccellenza”. A. L. acknowledges financial support from MIUR PRIN 2015 (contract 2015F59J3R\(\_\)002). A.L. thanks the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma, for allocated computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Perri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O. (2020). Binary Classification of Proteins by a Machine Learning Approach. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12255. Springer, Cham. https://doi.org/10.1007/978-3-030-58820-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58820-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58819-9

  • Online ISBN: 978-3-030-58820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics