Skip to main content

Indoor Positioning Methods – A Short Review and First Tests Using a Robotic Platform for Tunnel Monitoring

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The aim of this work is to provide a review of the main indoor positioning methodologies, in order to evidence their strengths and weaknesses, and explore the potential of the integration in an Unmanned Ground Vehicle built for tunnel monitoring purposes. A robotic platform, named Bulldog, has been designed and assembled by Sipal S.p.a., with the support of the research group Applied Geomatic laboratory (AGlab) of the Politecnico di Bari, in the definition of the data processing pipeline. Preliminary results show that the integration of indoor positioning techniques in the Bulldog platform represents an important advance for accurate monitoring and analysis of a tunnel during the construction stage, allowing a fast and reliable survey of the indoor environment and requiring, at this prototypal stage of development, only a remote supervision by the operator. Expected improvements will allow to carry out tunnel monitoring activities in a fully autonomous mode, bringing benefit for the safety of people involved in the construction works and the accuracy of the acquired dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendoza Silva, G., Torres-Sospedra, J., Huerta, J.: A Meta-Review of Indoor Positioning Systems. Sensors 19(20), 4507 (2019)

    Article  Google Scholar 

  2. Rosinol Vidal, A., Rebecq, H., Horstschaefer, T., Scaramuzza, D.: Ultimate SLAM? combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios. IEEE Robot. Autom. Lett. 3(2), 994–1001 (2018)

    Article  Google Scholar 

  3. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  4. Mascitelli, A.: An open source platform for indoor navigation: application to the Faculty of Civil and Industrial Engineering of Sapienza, University of Rome. Bollettino Sifet n.2- Sezione Scienza (2017)

    Google Scholar 

  5. Schneider, O.: Requirements for positioning and navigation in underground constructions. In: Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 15–17 September, Campus Science City, ETH Zurich, Switzerland (2010)

    Google Scholar 

  6. Mautz, R.: Indoor Positioning Technologies. In: Sechsundachtzigster Band +, vol. 86 (2012)

    Google Scholar 

  7. Ravanelli, R., Nascetti, A., Crespi, M.: Kinect V2 and RGB stereo-cameras integration for depth map enhancement. Int. Arch. Photogrammetry Remote Sens. Spatial Inform. Sci. XLI-B5–XXIII, 699–702 (2016)

    Google Scholar 

  8. Duan, C., Junginger, S., Huang, J., Jin, K., Thurow, K.: Deep learning for visual SLAM in transportation robotics: a review. Transp. Safe. Environ. 1, 177–184 (2019)

    Article  Google Scholar 

  9. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (2011)

    Google Scholar 

  10. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568 (2011)

    Google Scholar 

  11. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J. J., McDonald, J.: Kintinuous: Spatially extended kinectfusion. Technical report, MIT CSAIL (2012)

    Google Scholar 

  12. Sakpere, W., Adeyeye-Oshin, M., Mlitwa, N.B.W.: A state-of-the-art survey of indoor positioning and navigation systems and technologies. S. Afr. Comput. J. 29(3), 145–197 (2017)

    Google Scholar 

  13. Priyantha, N.B.: The cricket indoor location system. Doctoral dissertation, Massachusetts Institute of Technology (2005)

    Google Scholar 

  14. Yassin, A., et al.: Recent advances in indoor localization: a survey on theoretical approaches and applications. IEEE Commun. Surv. Tutor. 2017(19), 1327–1346 (2017)

    Article  Google Scholar 

  15. Schmidt, E., Huang, Y., Akopian, D.: Indoor positioning via WLAN channel state information and machine learning classification approaches. In: Proceedings of ION GNSS+, pp. 355–166 (2019)

    Google Scholar 

  16. Bahl, P., Padmanabhan, V.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 775–784 (2000)

    Google Scholar 

  17. Youssef, M., Agrawala, A.: He Horus WLAN location determination system. In: Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services (MobiSys 2005), Seattle, WA, USA, pp. 205–218 (2005)

    Google Scholar 

  18. Schmidt, E., Akopian, D.: Fast prototyping of an SDR WLAN 802.11b Receiver for an indoor positioning systems. In: Proceedings of 31st International Technical Meeting Satellite Division Institute Navigation (ION GNSS), Miami, FL, USA, pp. 674–684 (2018)

    Google Scholar 

  19. Wang, X., Gao, L., Mao, S., Pandey, S.: CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans. Veh. Technol. 66(1), 763–776 (2017)

    Google Scholar 

  20. Wang, X., Gao, L., Mao, S.: CSI phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet Things J. 3(6), 1113–1123 (2016)

    Article  Google Scholar 

  21. Hsieh, C.-H., Chen, J.-Y., Nien, B.-H: Deep learning-based indoor localization using received signal strength and channel state information. IEEE Access 7, 33256–33267 (2019)

    Google Scholar 

  22. Chen, H., Zhang, Y., Li, W., Tao, X., Zhang, P.: ConFi: convolutional neural networks based indoor Wi-Fi localization using channel state information. IEEE Access 5, 18066–18074 (2017)

    Article  Google Scholar 

  23. Brena, R.F.; García-Vázquez, J.P.; Galván-Tejada, C.E.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J.: Evolution of indoor positioning technologies: a survey. J. Sens. 2017, 1–21 (2017)

    Google Scholar 

  24. Gabela, J., et al.: Experimental evaluation of a UWB-based cooperative positioning system for pedestrians in GNSS-denied environment. Sensors 2019, 5274 (2019)

    Article  Google Scholar 

  25. Mazhar, F., Khan, M.G., Sällberg, B.: Precise indoor positioning using UWB: a review of methods, algorithms and implementations. Wireless Pers. Commun. 97(3), 4467–4491 (2017). https://doi.org/10.1007/s11277-017-4734-x

    Article  Google Scholar 

  26. Xu, B., Sun, G., Yu, R., Yang, Z.: High-accuracy TDOA-based localization without time synchronization. IEEE Trans. Parallel Distrib. Syst. 24(8), 1567–1576 (2013)

    Article  Google Scholar 

  27. Pittet, S., Renaudin, V., Merminod, B., Kasser, M.: UWB and MEMS-based indoor navigation. J. Navig. 61, 369–384 (2008)

    Google Scholar 

  28. Zhang, J., Li, B., Dempster, A.G., Rizos, C.: Evaluation of high sensitivity GPS receivers. In: International Symposium on GPS/GNSS Taipei, Taiwan. 26–28 October 2010

    Google Scholar 

  29. Xu, R., Chen, W., Xu, Y., Ji, S.: A new indoor positioning system architecture using GPS signals. Sensors 15, 10074–10087 (2015)

    Article  Google Scholar 

  30. D’Aranno, P.J.V.: High-resolution geomatic and geophysical techniques integrated with chemical analyses for the characterization of a Roman wall. J. Cult. Heritage 17, 141–150 (2016)

    Article  Google Scholar 

  31. Argese, F., et al.: Piattaforma HW/SW per la gestione dei Cantieri Tecnologici per Infrastrutture Civili. Atti Asita (2019)

    Google Scholar 

  32. ROS Website. http://www.ros.org. Accessed 15 Feb 2020

  33. Turtlebot Website. http://www.turtlebot.com. Accessed 15 Feb 2020

Download references

Acknowledgements

This research is funded by the project “Technological Construction Site for Military and Civil Infrastructures/Cantiere Tecnologico per Infrastrutture Militari e Civili.” (Unmanned Vehicles and Virtual Facilities), co-financed by the European Union-European Regional Development Fund POR Puglia 2014/2020 and Puglia Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberico Sonnessa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sonnessa, A., Saponaro, M., Alfio, V.S., Capolupo, A., Turso, A., Tarantino, E. (2020). Indoor Positioning Methods – A Short Review and First Tests Using a Robotic Platform for Tunnel Monitoring. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics