Skip to main content

Sex Differences in Mitochondrial Antioxidant Gene Expression

  • Chapter
  • First Online:
Sex Differences in Heart Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 21))

  • 298 Accesses

Abstract

Females live longer than males. This could be in part due to the higher levels of estrogens in females, which protect them against aging. Physiological concentrations of estrogens have antioxidant effects as they induce the expression of manganese superoxide dismutase and glutathione peroxidase by stimulating estrogen receptors and the mitogen-activated protein kinase and nuclear factor kappa B pathways. However, estrogens can have undesirable effects such as they are feminizing to males, so other alternatives need to be searched. Phytoestrogens are good candidates as they can also bind to estrogens receptors, and in fact, they are able to mimic the antioxidant properties of estrogens. It is very important to consider that the expression of estrogen receptors is not the same between sexes, organs or that their proportion changes with age. Depending on the organ studied, there are differences in the estrogen receptors involved in the beneficial effects of estrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  Google Scholar 

  2. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  PubMed  Google Scholar 

  3. Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591. https://doi.org/10.1016/0531-5565(80)90010-8

    Article  CAS  PubMed  Google Scholar 

  4. Miquel J, de Juan E, Sevila I (1992) Oxygen-induced mitochondrial damage and aging. EXS 62:47–57. https://doi.org/10.1007/978-3-0348-7460-1_5

    Article  CAS  PubMed  Google Scholar 

  5. Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J (2003) Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radical Biol Med 34:546–552. https://doi.org/10.1016/S0891-5849(02)01356-4

    Article  CAS  Google Scholar 

  6. Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE, Vina J (2005) 17beta-oestradiol up-regulates longevity-related, antioxidant enzyme expression via the ERK1 and ERK2[MAPK]/NFkappaB cascade. Aging Cell 4:113–118. https://doi.org/10.1111/j.1474-9726.2005.00151.x

    Article  CAS  PubMed  Google Scholar 

  7. Mahn K, Borras C, Knock GA, Taylor P, Khan IY, Sugden D, Poston L, Ward JP, Sharpe RM, Vina J et al (2005) Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. FASEB J: Official Publication of the Federation of American Societies for Experimental Biology 19:1755–1757. https://doi.org/10.1096/fj.05-4008fje

    Article  CAS  Google Scholar 

  8. Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE, Vina J (2006) Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J: Official Publication of the Federation of American Societies for Experimental Biology 20:2136–2138. https://doi.org/10.1096/fj.05-5522fje

    Article  CAS  Google Scholar 

  9. Novella S, Laguna-Fernandez A, Lazaro-Franco M, Sobrino A, Bueno-Beti C, Tarin JJ, Monsalve E, Sanchis J, Hermenegildo C (2013) Estradiol, acting through estrogen receptor alpha, restores dimethylarginine dimethylaminohydrolase activity and nitric oxide production in oxLDL-treated human arterial endothelial cells. Mol Cell Endocrinol 365:11–16. https://doi.org/10.1016/j.mce.2012.08.020

    Article  CAS  PubMed  Google Scholar 

  10. Cutler RG (1984) Antioxidants, aging and longevity. In Free radicals in biology, Pryor WA (Ed). Academic Press: Orlando, Vol IV, pp 371–428

    Google Scholar 

  11. Cutler RG (1991) Human longevity and aging: possible role of reactive oxygen species. Ann N Y Acad Sci 621:1–28. https://doi.org/10.1111/j.1749-6632.1991.tb16965.x

    Article  CAS  PubMed  Google Scholar 

  12. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. https://doi.org/10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  13. Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Article  CAS  Google Scholar 

  14. Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J: Official Publication of the Federation of American Societies for Experimental Biology 14:312–318. https://doi.org/10.1096/fasebj.14.2.312

    Article  CAS  Google Scholar 

  15. Gil P, Fariñas F, Casado A, López-Fernández E (2002) Malondialdehyde: a possible marker of ageing. Gerontology 48:209–214. https://doi.org/10.1159/000058352

    Article  CAS  PubMed  Google Scholar 

  16. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88:10540–10543. https://doi.org/10.1073/pnas.88.23.10540

    Article  CAS  PubMed  Google Scholar 

  17. Carracedo J, Ramírez-Carracedo R, Martínez de Toda I, Vida C, Alique M, De la Fuente M, Ramírez-Chamond R (2018) Protein Carbamylation: a marker reflecting increased age-related cell oxidation. Int J Mol Sci 19:1495. https://doi.org/10.3390/ijms19051495

  18. Tolmasoff JM, Ono T, Cutler RG (1980) Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci USA 77:2777–2781. https://doi.org/10.1073/pnas.77.5.2777

    Article  CAS  PubMed  Google Scholar 

  19. Remacle J, Michiels C, Raes M (1992) The importance of antioxidant enzymes in cellular aging and degeneration. EXS 62:99–108. https://doi.org/10.1007/978-3-0348-7460-1_11

    Article  CAS  PubMed  Google Scholar 

  20. Sohal RS, Toy PL, Allen RG (1986) Relationship between life expectancy, endogenous antioxidants and products of oxygen free radical reactions in the housefly, Musca domestica. Mech Ageing Dev 36:71–77. https://doi.org/10.1016/0047-6374(86)90140-5

    Article  CAS  PubMed  Google Scholar 

  21. Niveditha S, Deepashree S, Ramesh SR, Shivanandappa T (2017) Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster. J Comp Physiol B 187:899–909. https://doi.org/10.1007/s00360-017-1061-1

    Article  CAS  PubMed  Google Scholar 

  22. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313. https://doi.org/10.1038/nm1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460. https://doi.org/10.1016/j.cell.2008.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wickens AP (2001) Ageing and the free radical theory. Respir Physiol 128:379–391. https://doi.org/10.1016/S0034-5687(01)00313-9

    Article  CAS  PubMed  Google Scholar 

  25. Miwa S, Riyahi K, Partridge L, Brand MD (2004) Lack of correlation between mitochondrial reactive oxygen species production and life span in Drosophila. Ann N Y Acad Sci 1019:388–391. https://doi.org/10.1196/annals.1297.069

    Article  CAS  PubMed  Google Scholar 

  26. Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418. https://doi.org/10.1016/j.exger.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  27. Vina J, Borras C, Abdelaziz KM, Garcia-Valles R, Gomez-Cabrera MC (2013) The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal 19:779–787. https://doi.org/10.1089/ars.2012.5111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vina J, Sastre J, Pallardo F, Borras C (2003) Mitochondrial theory of aging: importance to explain why females live longer than males. Antioxid Redox Signal 5:549–556. https://doi.org/10.1089/152308603770310194

    Article  CAS  PubMed  Google Scholar 

  29. Austad SN (2006) Why women live longer than men: sex differences in longevity. Gend Med 3:79–92. https://doi.org/10.1016/s1550-8579(06)80198-1

    Article  PubMed  Google Scholar 

  30. Arnal JF, Clamens S, Pechet C, Negre-Salvayre A, Allera C, Girolami JP, Salvayre R, Bayard F (1996) Ethinylestradiol does not enhance the expression of nitric oxide synthase in bovine endothelial cells but increases the release of bioactive nitric oxide by inhibiting superoxide anion production. Proc Natl Acad Sci USA 93:4108–4113. https://doi.org/10.1073/pnas.93.9.4108

    Article  CAS  PubMed  Google Scholar 

  31. Russell JK, Jones CK, Newhouse PA (2019) The role of estrogen in brain and cognitive aging. Neurother: J Am Soc Exp NeuroTher 16:649–665. https://doi.org/10.1007/s13311-019-00766-9

    Article  CAS  Google Scholar 

  32. Diaz A, Lopez-Grueso R, Gambini J, Monleon D, Mas-Bargues C, Abdelaziz KM, Vina J, Borras C (2019) Sex differences in age-associated type 2 diabetes in rats-role of estrogens and oxidative stress. Oxid Med Cell Longev 2019:6734836. https://doi.org/10.1155/2019/6734836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown C (2017) Osteoporosis: staying strong. Nature 550:S15-s17. https://doi.org/10.1038/550S15a

    Article  CAS  PubMed  Google Scholar 

  34. Garratt M, Lagerborg KA, Tsai YM, Galecki A, Jain M, Miller RA (2018) Male lifespan extension with 17-alpha estradiol is linked to a sex-specific metabolomic response modulated by gonadal hormones in mice. Aging Cell 17:e12786. https://doi.org/10.1111/acel.12786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vina J, Borras C, Miquel J (2007) Theories of ageing. IUBMB Life 59:249–254. https://doi.org/10.1080/15216540601178067

    Article  CAS  PubMed  Google Scholar 

  36. Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science (New York, N.Y.) 263:1128–1130

    Google Scholar 

  37. Madej A, Persson E, Lundh T, Ridderstrale Y (2002) Thyroid gland function in ovariectomized ewes exposed to phytoestrogens. J Chromatogr B Analyt Technol Biomed Life Sci 777:281–287

    Article  CAS  Google Scholar 

  38. Setchell KD, Borriello SP, Hulme P, Kirk DN, Axelson M (1984) Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr 40:569–578. https://doi.org/10.1093/ajcn/40.3.569

    Article  CAS  PubMed  Google Scholar 

  39. Adlercreutz H, Hockerstedt K, Bannwart C, Bloigu S, Hamalainen E, Fotsis T, Ollus A (1987) Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG). J Steroid Biochem 27:1135–1144. https://doi.org/10.1016/0022-4731(87)90200-7

    Article  CAS  PubMed  Google Scholar 

  40. Adlercreutz H, Fotsis T, Heikkinen R, Dwyer JT, Woods M, Goldin BR, Gorbach SL (1982) Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer. Lancet (London, England) 2:1295–1299. https://doi.org/10.1016/s0140-6736(82)91507-0

    Article  CAS  Google Scholar 

  41. Adlercreutz H, Honjo H, Higashi A, Fotsis T, Hamalainen E, Hasegawa T, Okada H (1991) Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am J Clin Nutr 54:1093–1100. https://doi.org/10.1093/ajcn/54.6.1093

    Article  CAS  PubMed  Google Scholar 

  42. Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, Adlercreutz H (2003) Soy isoflavones: a safety review. Nutr Rev 61:1–33. https://doi.org/10.1301/nr.2003.janr.1-33

    Article  PubMed  Google Scholar 

  43. Bonet-Costa V, Herranz-Perez V, Blanco-Gandia M, Mas-Bargues C, Ingles M, Garcia-Tarraga P, Rodriguez-Arias M, Minarro J, Borras C, Garcia-Verdugo JM et al (2016) Clearing Amyloid-beta through PPARgamma/ApoE activation by genistein is a treatment of experimental Alzheimer’s disease. J Alzheimer’s Dis 51:701–711. https://doi.org/10.3233/JAD-151020

    Article  CAS  Google Scholar 

  44. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Investig 116:561–570. https://doi.org/10.1172/jci27987

    Article  CAS  PubMed  Google Scholar 

  45. Burns KA, Korach KS (2012) Estrogen receptors and human disease: an update. Arch Toxicol 86:1491–1504. https://doi.org/10.1007/s00204-012-0868-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vrtacnik P, Ostanek B, Mencej-Bedrac S, Marc J (2014) The many faces of estrogen signaling. Biochem Med 24:329–342. https://doi.org/10.11613/bm.2014.035

    Article  Google Scholar 

  47. Khalil RA (2013) Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease. Biochem Pharmacol 86:1627–1642. https://doi.org/10.1016/j.bcp.2013.09.024

    Article  CAS  PubMed  Google Scholar 

  48. Harkonen PL, Vaananen HK (2006) Monocyte-macrophage system as a target for estrogen and selective estrogen receptor modulators. Ann N Y Acad Sci 1089:218–227. https://doi.org/10.1196/annals.1386.045

    Article  CAS  PubMed  Google Scholar 

  49. Kovats S (2015) Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 294:63–69. https://doi.org/10.1016/j.cellimm.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919. https://doi.org/10.1093/nar/29.14.2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lindberg MK, Moverare S, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA, Ohlsson C (2003) Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying yang” relationship between ERalpha and ERbeta in mice. Mol Endocr (Baltimore, Md.) 17:203–208. https://doi.org/10.1210/me.2002-0206

  52. Tsutsumi S, Zhang X, Takata K, Takahashi K, Karas RH, Kurachi H, Mendelsohn ME (2008) Differential regulation of the inducible nitric oxide synthase gene by estrogen receptors 1 and 2. J Endocr 199:267–273. https://doi.org/10.1677/joe-07-0292

    Article  CAS  PubMed  Google Scholar 

  53. Arias-Loza PA, Hu K, Dienesch C, Mehlich AM, Konig S, Jazbutyte V, Neyses L, Hegele-Hartung C, Heinrich Fritzemeier K, Pelzer T (2007) Both estrogen receptor subtypes, alpha and beta, attenuate cardiovascular remodeling in aldosterone salt-treated rats. Hypertension 50:432–438. https://doi.org/10.1161/hypertensionaha.106.084798

    Article  CAS  PubMed  Google Scholar 

  54. Lahm T, Crisostomo PR, Markel TA, Wang M, Wang Y, Tan J, Meldrum DR (2008) Selective estrogen receptor-alpha and estrogen receptor-beta agonists rapidly decrease pulmonary artery vasoconstriction by a nitric oxide-dependent mechanism. Am J Physiol. Regul Integr Comp Physiol 295:R1486–1493. https://doi.org/10.1152/ajpregu.90667.2008

  55. Levin ER (2009) Plasma membrane estrogen receptors. Trends Endocrinol Metab: TEM 20:477–482. https://doi.org/10.1016/j.tem.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  56. Kim KH, Young BD, Bender JR (2014) Endothelial estrogen receptor isoforms and cardiovascular disease. Mol Cell Endocrinol 389:65–70. https://doi.org/10.1016/j.mce.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim KH, Bender JR (2009) Membrane-initiated actions of estrogen on the endothelium. Mol Cell Endocrinol 308:3–8. https://doi.org/10.1016/j.mce.2009.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin AH, Li RW, Ho EY, Leung GP, Leung SW, Vanhoutte PM, Man RY (2013) Differential ligand binding affinities of human estrogen receptor-alpha isoforms. PLoS ONE 8:e63199. https://doi.org/10.1371/journal.pone.0063199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Novella S, Perez-Cremades D, Mompeon A, Hermenegildo C (2019) Mechanisms underlying the influence of oestrogen on cardiovascular physiology in women. J Physiol 597:4873–4886. https://doi.org/10.1113/jp278063

    Article  CAS  PubMed  Google Scholar 

  60. Jia M, Dahlman-Wright K, Gustafsson JA (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res. Clin Endocrinol Metab 29:557–568. https://doi.org/10.1016/j.beem.2015.04.008

  61. Kondo T, Hirose M, Kageyama K (2009) Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thrombosis 16:532–538. https://doi.org/10.5551/jat.1255

    Article  CAS  Google Scholar 

  62. Barton M (2013) Cholesterol and atherosclerosis: modulation by oestrogen. Curr Opin Lipidol 24:214–220. https://doi.org/10.1097/MOL.0b013e3283613a94

    Article  CAS  PubMed  Google Scholar 

  63. Usselman CW, Stachenfeld NS, Bender JR (2016) The molecular actions of oestrogen in the regulation of vascular health. Exp Physiol 101:356–361. https://doi.org/10.1113/ep085148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murphy E, Steenbergen C (2014) Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 5:6. https://doi.org/10.1186/2042-6410-5-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pare G, Krust A, Karas RH, Dupont S, Aronovitz M, Chambon P, Mendelsohn ME (2002) Estrogen receptor-alpha mediates the protective effects of estrogen against vascular injury. Circ Res 90:1087–1092. https://doi.org/10.1161/01.res.0000021114.92282.fa

    Article  CAS  PubMed  Google Scholar 

  66. Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B et al (2017) Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev 97:1045–1087. https://doi.org/10.1152/physrev.00024.2016

    Article  PubMed  Google Scholar 

  67. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science (New York, N.Y.) 307:1625–1630. https://doi.org/10.1126/science.1106943

  68. Prossnitz ER, Barton M (2011) The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev. Endocrinol 7:715–726. https://doi.org/10.1038/nrendo.2011.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller VM, Mulvagh SL (2007) Sex steroids and endothelial function: translating basic science to clinical practice. Trends Pharmacol Sci 28:263–270. https://doi.org/10.1016/j.tips.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  70. Sobrino A, Oviedo PJ, Novella S, Laguna-Fernandez A, Bueno C, Garcia-Perez MA, Tarin JJ, Cano A, Hermenegildo C (2010) Estradiol selectively stimulates endothelial prostacyclin production through estrogen receptor-{alpha}. J Mol Endocrinol 44:237–246. https://doi.org/10.1677/jme-09-0112

    Article  CAS  PubMed  Google Scholar 

  71. Mompeon A, Lazaro-Franco M, Bueno-Beti C, Perez-Cremades D, Vidal-Gomez X, Monsalve E, Gironacci MM, Hermenegildo C, Novella S (2016) Estradiol, acting through ERalpha, induces endothelial non-classic renin-angiotensin system increasing angiotensin 1–7 production. Mol Cell Endocrinol 422:1–8. https://doi.org/10.1016/j.mce.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  72. Dubey RK, Jackson EK, Keller PJ, Imthurn B, Rosselli M (2001) Estradiol metabolites inhibit endothelin synthesis by an estrogen receptor-independent mechanism. Hypertension 37:640–644. https://doi.org/10.1161/01.hyp.37.2.640

    Article  CAS  PubMed  Google Scholar 

  73. Nickenig G, Baumer AT, Grohe C, Kahlert S, Strehlow K, Rosenkranz S, Stablein A, Beckers F, Smits JF, Daemen MJ et al (1998) Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation 97:2197–2201. https://doi.org/10.1161/01.cir.97.22.2197

    Article  CAS  PubMed  Google Scholar 

  74. Sumi D, Ignarro LJ (2003) Estrogen-related receptor alpha 1 up-regulates endothelial nitric oxide synthase expression. Proc Natl Acad Sci USA 100:14451–14456. https://doi.org/10.1073/pnas.2235590100

    Article  CAS  PubMed  Google Scholar 

  75. Rubanyi GM, Freay AD, Kauser K, Sukovich D, Burton G, Lubahn DB, Couse JF, Curtis SW, Korach KS (1997) Vascular estrogen receptors and endothelium-derived nitric oxide production in the mouse aorta. Gender difference and effect of estrogen receptor gene disruption. J Clin Invest 99, 2429–2437. https://doi.org/10.1172/jci119426

  76. Rubio-Gayosso I, Sierra-Ramirez A, Garcia-Vazquez A, Martinez-Martinez A, Munoz-Garcia O, Morato T, Ceballos-Reyes G (2000) 17Beta-estradiol increases intracellular calcium concentration through a short-term and nongenomic mechanism in rat vascular endothelium in culture. J Cardiovasc Pharmacol 36:196–202. https://doi.org/10.1097/00005344-200008000-00009

    Article  CAS  PubMed  Google Scholar 

  77. Dantas AP, Tostes RC, Fortes ZB, Costa SG, Nigro D, Carvalho MH (2002) In vivo evidence for antioxidant potential of estrogen in microvessels of female spontaneously hypertensive rats. Hypertension 39:405–411. https://doi.org/10.1161/hy0202.102993

    Article  CAS  PubMed  Google Scholar 

  78. Ospina JA, Krause DN, Duckles SP (2002) 17beta-estradiol increases rat cerebrovascular prostacyclin synthesis by elevating cyclooxygenase-1 and prostacyclin synthase. Stroke 33:600–605. https://doi.org/10.1161/hs0202.102732

    Article  CAS  PubMed  Google Scholar 

  79. Fredette NC, Meyer MR, Prossnitz ER (2018) Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J Steroid Biochem Molr Biol 176:65–72. https://doi.org/10.1016/j.jsbmb.2017.05.006

    Article  CAS  Google Scholar 

  80. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(829–837):837a–837d. https://doi.org/10.1093/eurheartj/ehr304

    Article  CAS  Google Scholar 

  81. Sobrino A, Mata M, Laguna-Fernandez A, Novella S, Oviedo PJ, Garcia-Perez MA, Tarin JJ, Cano A, Hermenegildo C (2009) Estradiol stimulates vasodilatory and metabolic pathways in cultured human endothelial cells. PLoS ONE 4:e8242. https://doi.org/10.1371/journal.pone.0008242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meyer MR, Fredette NC, Barton M, Prossnitz ER (2015) G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity. J Endocrinol 227:61–69. https://doi.org/10.1530/joe-15-0257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Farhat MY, Lavigne MC, Ramwell PW (1996) The vascular protective effects of estrogen. FASEB J: Official Publication of the Federation of American Societies for Experimental Biology 10:615–624

    Article  CAS  Google Scholar 

  84. Alvarez A, Hermenegildo C, Issekutz AC, Esplugues JV, Sanz MJ (2002) Estrogens inhibit angiotensin II-induced leukocyte-endothelial cell interactions in vivo via rapid endothelial nitric oxide synthase and cyclooxygenase activation. Circ Res 91:1142–1150. https://doi.org/10.1161/01.res.0000046018.23605.3e

    Article  CAS  PubMed  Google Scholar 

  85. Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K, Zhang C (2014) Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets. Nat Rev Cardiol 11:413–426. https://doi.org/10.1038/nrcardio.2014.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sullivan JC. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Compar Physiol 294:R1220–1226. https://doi.org/10.1152/ajpregu.00864.2007

  87. Brosnihan KB, Hodgin JB, Smithies O, Maeda N, Gallagher P (2008) Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-alpha knock-out mice. Exp Physiol 93:658–664. https://doi.org/10.1113/expphysiol.2007.041806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sobrino A, Vallejo S, Novella S, Lazaro-Franco M, Mompeon A, Bueno-Beti C, Walther T, Sanchez-Ferrer C, Peiro C, Hermenegildo C (2017) Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation. Biochem Pharmacol 129:67–72. https://doi.org/10.1016/j.bcp.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  89. Komukai K, Mochizuki S, Yoshimura M (2010) Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol 24:687–698. https://doi.org/10.1111/j.1472-8206.2010.00854.x

    Article  CAS  PubMed  Google Scholar 

  90. Hilliard LM, Sampson AK, Brown RD, Denton KM (2013) The “his and hers” of the renin-angiotensin system. Curr Hypertens Rep 15:71–79. https://doi.org/10.1007/s11906-012-0319-y

    Article  CAS  PubMed  Google Scholar 

  91. Stanhewicz AE, Wenner MM, Stachenfeld NS (2018) Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol 315:H1569–h1588. https://doi.org/10.1152/ajpheart.00396.2018

  92. Fichtlscherer S, Zeiher AM, Dimmeler S (2011) Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol 31:2383–2390. https://doi.org/10.1161/atvbaha.111.226696

    Article  CAS  PubMed  Google Scholar 

  93. Perez-Cremades D, Mompeon A, Vidal-Gomez X, Hermenegildo C, Novella S (2018) Role of miRNA in the regulatory mechanisms of estrogens in cardiovascular ageing. Oxid Med Cell Longev 2018:6082387. https://doi.org/10.1155/2018/6082387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Perez-Cremades D, Mompeon A, Vidal-Gomez X, Hermenegildo C, Novella S (2018) miRNA as a new regulatory mechanism of estrogen vascular action. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020473

  95. Vidal-Gomez X, Perez-Cremades D, Mompeon A, Dantas AP, Novella S, Hermenegildo C (2018) MicroRNA as crucial regulators of gene expression in estradiol-treated human endothelial cells. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem Pharmacol 45:1878–1892. https://doi.org/10.1159/000487910

    Article  CAS  Google Scholar 

  96. Zhao J, Imbrie GA, Baur WE, Iyer LK, Aronovitz MJ, Kershaw TB, Haselmann GM, Lu Q, Karas RH (2013) Estrogen receptor-mediated regulation of microRNA inhibits proliferation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 33:257–265. https://doi.org/10.1161/atvbaha.112.300200

    Article  CAS  PubMed  Google Scholar 

  97. Wang L, Tang ZP, Zhao W, Cong BH, Lu JQ, Tang XL, Li XH, Zhu XY, Ni X (2015) MiR-22/Sp-1 Links estrogens with the up-regulation of cystathionine gamma-Lyase in Myocardium, which contributes to estrogenic cardioprotection against oxidative stress. Endocrinology 156:2124–2137. https://doi.org/10.1210/en.2014-1362

    Article  PubMed  Google Scholar 

  98. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984. https://doi.org/10.1038/nature07511

    Article  CAS  PubMed  Google Scholar 

  99. Queiros AM, Eschen C, Fliegner D, Kararigas G, Dworatzek E, Westphal C, Sanchez Ruderisch H, Regitz-Zagrosek V (2013) Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int J Cardiol 169:331–338. https://doi.org/10.1016/j.ijcard.2013.09.002

    Article  PubMed  Google Scholar 

  100. Rider V, Li X, Peterson G, Dawson J, Kimler BF, Abdou NI (2006) Differential expression of estrogen receptors in women with systemic lupus erythematosus. J Rheumatol 33:1093–1101

    CAS  PubMed  Google Scholar 

  101. Xing D, Feng W, Miller AP, Weathington NM, Chen YF, Novak L, Blalock JE, Oparil S (2007) Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation. Am J Physiol. Heart Circ Physiol 292:H2607–2612. https://doi.org/10.1152/ajpheart.01107.2006

  102. Novella S, Heras M, Hermenegildo C, Dantas AP (2012) Effects of estrogen on vascular inflammation: a matter of timing. Arterioscler Thromb Vasc Biol 32:2035–2042. https://doi.org/10.1161/atvbaha.112.250308

    Article  CAS  PubMed  Google Scholar 

  103. Novensa L, Novella S, Medina P, Segarra G, Castillo N, Heras M, Hermenegildo C, Dantas AP (2011) Aging negatively affects estrogens-mediated effects on nitric oxide bioavailability by shifting ERalpha/ERbeta balance in female mice. PLoS ONE 6:e25335. https://doi.org/10.1371/journal.pone.0025335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hurtado R, Celani M, Geber S (2016) Effect of short-term estrogen therapy on endothelial function: a double-blinded, randomized, controlled trial. Climacteric: J Int Menopause Soc 19:448–451. https://doi.org/10.1080/13697137.2016.1201809

    Article  CAS  Google Scholar 

  105. Sherwood A, Bower JK, McFetridge-Durdle J, Blumenthal JA, Newby LK, Hinderliter AL (2007) Age moderates the short-term effects of transdermal 17beta-estradiol on endothelium-dependent vascular function in postmenopausal women. Arterioscler Thromb Vasc Biol 27:1782–1787. https://doi.org/10.1161/atvbaha.107.145383

    Article  CAS  PubMed  Google Scholar 

  106. Sood R, Faubion SS, Kuhle CL, Thielen JM, Shuster LT (2014) Prescribing menopausal hormone therapy: an evidence-based approach. Int J Women’s Health 6:47–57. https://doi.org/10.2147/ijwh.s38342

    Article  Google Scholar 

  107. Clarkson TB, Melendez GC, Appt SE (2013) Timing hypothesis for postmenopausal hormone therapy: its origin, current status, and future. Menopause (New York, N.Y.) 20:342–353. https://doi.org/10.1097/GME.0b013e3182843aad

  108. Melton LJ (1990) 3rd. Hip fracture incidence and survival among members of a California medical care program. Clin Orthopaed Related Res 310–311

    Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: PCIN-2017-117 of the Ministry of Economy and Competitiveness, PI 16/00229 and PI 19/1714 of the Ministry of Science, Innovation and Universities, Health Institute Carlos III—FEDER-ERDF, the EU Joint Programming Initiative ‘A Healthy Diet for a Healthy Life’ (JPI HDHL INTIMIC-085) to C.B. A.B.P. is recipient of a predoctoral grant financed by Health Institute Carlos III (FI18/00323). Dr. C. M.-B. is recipient of a postdoctoral grant financed by Generalitat Valenciana (APOSTD/2018/230) and FSE (European Social Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo Borrás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borrás, C., Mas-Bargues, C., Paes, A.B., Novella, S. (2020). Sex Differences in Mitochondrial Antioxidant Gene Expression. In: Ostadal, B., Dhalla, N.S. (eds) Sex Differences in Heart Disease. Advances in Biochemistry in Health and Disease, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-58677-5_16

Download citation

Publish with us

Policies and ethics