Skip to main content

Seismic Viscoelastic Attenuation

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Seismic intrinsic attenuation

Definition

Linear viscoelastic attenuation. The fractional loss of seismic energy in a material in which elastic deformation (strain) induced by one cycle of a seismic wave or mode lags in time the applied stress associated with the wave or mode.

Apparent seismicattenuation. The loss of energy in a propagating seismic wave or standing mode due to viscoelasticity combined with the loss of scattered energy redistributed in time and space by heterogeneity.

Introduction

The amplitude of seismic waves decreases with increasing distance from earthquake, explosion, and impact sources. How this amplitude decrease occurs and how it depends on frequency of the seismic waves are fundamentally important to the efforts to describe Earth structure and seismic sources. The decay of amplitude of seismic waves with increasing distance of propagation through Earth is known as seismic wave attenuation. The attenuation occurring under high-temperature rheological...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anderson DL (1989) Theory of the Earth. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Anderson DL, Given JW (1982) The absorption band Q model for the Earth. J Geophys Res 87:3893–3904

    Article  Google Scholar 

  • Bao X, Dalton CA, Jin G, Gaherty JB, Shen Y (2016) Imaging Rayleigh wave attenuation with USArray. Geophys J Int 206:241–259

    Article  Google Scholar 

  • Bataille K, Calisto I (2008) Seismic coda due to non-linear elasticity. Geophys J Int 172:572–580

    Article  Google Scholar 

  • Blanch JO, Robertsson JOA, Symes WW (1995) Optimally efficient constant Q modeling. Geophysics 60:176–184

    Article  Google Scholar 

  • Boatwright J, Choy G (1986) Teleseismic estimates of the energy radiated by shallow earthquakes. J Geophys Res 91:2095–2112

    Article  Google Scholar 

  • Calvet M, Margerin L (2008) Constraints on grain size and stable iron phases in the uppermost inner core from multiple scattering modeling of seismic velocity and attenuation. Earth Planet Sci Lett 267:200–212

    Article  Google Scholar 

  • Carpenter EW (1967) Teleseismic signal calculated for underground, underwater, and atmospheric explosions. Geophysics 32:17–32

    Article  Google Scholar 

  • Choy GL, Boatwright JL (1995) Global patterns of radiated seismic energy and apparent stress. J Geophys Res 100:18205–18228

    Article  Google Scholar 

  • Choy GL, Cormier VF (1986) Direct measurement of the mantle attenuation operator from broadband P and S waves. J Geophys Res 91:7326–7342

    Article  Google Scholar 

  • Cormier VF, Li X (2002) Frequency dependent attenuation in the inner core: Part II. A scattering and fabric interpretation. J Geophys Res 107(B12). https://doi.org/10.1029/2002JB1796

  • Cormier VF, Richards PG (1976) Comments on “The damping of core waves” by Anthony Qamar and Alfredo Eisenberg. J Geophys Res 81:3066–3068

    Article  Google Scholar 

  • Dalton CA, Ekstrom G, Dziewonski AM (2009) Global seismological shear velocity and attenuation: a comparison with experimental observations. Earth Planet Sci Lett 284:65–75

    Article  Google Scholar 

  • Delépine N, Lenti L, Bonnet G, Semblat J-F (2009) Nonlinear viscoelastic wave propagation: an extension of Nearly Constant Attenuation models. J Eng Mech (ASCE) 135(11):1305–1314

    Article  Google Scholar 

  • Der ZA, McElfresh TW, O’Dannell A (1982) An investigation of regional variations and frequency dependence of anelastic attenuation in the United States in the 0.5–4 Hz band. Geophys J R Astron Soc 69:67–100

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 24:297–356

    Article  Google Scholar 

  • Faul UH, Jackson I (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet Sci Lett 234:119–134

    Article  Google Scholar 

  • Futterman WI (1962) Dispersive body waves. J Geophys Res 67:5279–5291

    Article  Google Scholar 

  • Gross B (1953) Mathematical structure of the theories of viscoelasticity. Hermann, Paris

    Google Scholar 

  • Hong T-K, Wu R-S (2005) Scattering of elastic waves in geometrically anisotropic random media and its implication to sounding of heterogeneity in the Earth’s deep interior. Geophys J Int 163:324–338

    Article  Google Scholar 

  • Jackson I (1993) Progress in the experimental study of seismic attenuation. Annu Rev Earth Planet Sci 21:375–406

    Article  Google Scholar 

  • Jackson I (2007) Properties of rocks and minerals – physical origin of anelasticity and attenuation in rocks. In: Schubert G (ed) Treatise on geophysics, vol 2. Elsevier, Amsterdam, pp 493–525

    Chapter  Google Scholar 

  • Jackson DD, Anderson DL (1970) Physical mechanisms of seismic wave attenuation. Rev Geophys Space Phys 8:1–63

    Article  Google Scholar 

  • Jackson I, Webb S, Weston L, Boness D (2005) Frequency dependence of elastic wave speeds at high temperature: a direct experimental demonstration. Phys Earth Planet Inter 148:85–96

    Article  Google Scholar 

  • Kaelin B, Johnson LR (1998) Dynamic composite elastic medium theory. Part II. Three-dimensional media. J Appl Phys 84:5458–5468

    Article  Google Scholar 

  • Karato S-I, Jung H (1998) Water partial melting and the origin of the seismic low velocity zone in the upper mantle. Earth Planet Sci Lett 157:193–207

    Article  Google Scholar 

  • Knopoff L (1964) Q. Rev Geophys 2(4):625–660

    Article  Google Scholar 

  • Kohlstedt DL (2007) Properties of rocks and minerals – constitutive equations, rheological behavior, and viscosity of rocks. In: Schubert G (ed) Treatise on geophysics, vol 2. Elsevier, Amsterdam, pp 390–417

    Google Scholar 

  • Lekić V, Matas J, Panning MP, Romanowicz B (2009) Measurement and implications of frequency dependence of attenuation. Earth Planet Sci Lett 282:295–203

    Article  Google Scholar 

  • Li X, Cormier VF (2002) Frequency dependent attenuation in the inner core: Part I. A viscoelastic interpretation. J Geophys Res 107(B12). https://doi.org/10.1029/2002JB001795

  • Liu H-P, Anderson DL, Kanamori H (1976) Velocity dispersion due to anelasticity: implications for seismology and mantle composition. Geophys J R Astron Soc 47:41–58

    Article  Google Scholar 

  • Makinen A, Deuss A, Redfern SAT (2014) Anisotropy of Earth’s inner core intrinsic attenuation from seismic normal mode models. Earth Planet Sci Lett 404:354–364

    Article  Google Scholar 

  • Margerin L (2013) Introduction to radiative transfer of seismic waves. In: Levander A, Nolet G (eds) Seismic Earth: array analysis of broadband seismograms. https://doi.org/10.1029/157GM14

  • Minster JB (1978) Transient and impulse responses of a one-dimensional linearly attenuating medium—I. Analytical results. Geophys J R Astron Soc 52:479–501

    Article  Google Scholar 

  • Minster B, Anderson DL (1981) A model of dislocation-controlled rheology for the mantle. Philos Trans R Soc Lond 299:319–356

    Article  Google Scholar 

  • Morozov IG (2015) On the relation between bulk and shear seismic dissipation. Bull Seismol Soc Am 105:3180–3188

    Article  Google Scholar 

  • Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic, New York, p 677

    Google Scholar 

  • O’Connell RJ, Budiansky B (1977) Viscoelastic properties of fluid-saturated cracked solids. J Geophys Res 82:5719–5735

    Article  Google Scholar 

  • O’Doherty RF, Anstey NA (1971) Reflections on amplitudes. Geophys Prospect 19:430–458

    Article  Google Scholar 

  • Panning MP, Romanowicz BA (2006) A three dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys J Int 167:361–379

    Article  Google Scholar 

  • Ricard Y, Chambat F (2009) Seismic attenuation in a phase change coexistence loop. Phys Earth Planet Inter 176:124–131

    Article  Google Scholar 

  • Richards PG, Menke W (1983) The apparent attenuation of a scattering medium. Bull Seismol Soc Am 73:1005–1021

    Google Scholar 

  • Robertsson JOA, Blanch JO, Symes WW (1994) Viscoelastic finite-difference modeling. Geophysics 59:1444–1456

    Article  Google Scholar 

  • Romanowicz B, Mitchell B (2015) Deep earth structure: Q of the earth from crust to core. In: Schubert G (ed) Treatise on Geophysics, vol 1. Elsevier, Amsterdam, pp 789–827

    Chapter  Google Scholar 

  • Roth EG, Wiens DA, Zhao D (2000) An empirical relationship between seismic attenuation and velocity anomalies in the upper mantle. Geophys Res Lett 27:601–604

    Article  Google Scholar 

  • Sato H, Fehler MC, Maeda T (2012) Seismic wave propagation and scattering in the heterogeneous Earth, 2nd edn. Springer, New York

    Google Scholar 

  • Shearer, PM, Earle PS (2008) Observing and modeling elastic scattering in the deep Earth. Advances in geophysics, vol 50: Earth heterogeneity and scattering effects on seismic waves. 50 (Sato H, Fehler MC, Eds.)., Elsevier Academic, San Diego, pp 167–193. https://doi.org/10.1016/s0065-2687(08)00006-x

  • Silver PG (1996) Seismic anisotropy beneath the continents: probing the depths of geology. Annu Rev Earth Planet Sci 24:385–432

    Article  Google Scholar 

  • Stevenson DJ (1983) Anomalous bulk viscosity of two-phase fluids and implications for planetary interiors. J Geophys Res 88:2445–2455

    Article  Google Scholar 

  • Warren LM, Shearer PM (2000) Investigating the frequency dependence of mantle Q by stacking P and PP spectra. J Geophys Res 105(B11):25391–25402

    Article  Google Scholar 

  • Zener C (1960) Elasticity and anelasticity of metals. The University of Chicago Press, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon F. Cormier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cormier, V.F. (2021). Seismic Viscoelastic Attenuation. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-58631-7_55

Download citation

Publish with us

Policies and ethics