Skip to main content

6D Camera Relocalization in Ambiguous Scenes via Continuous Multimodal Inference

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

Abstract

We present a multimodal camera relocalization framework that captures ambiguities and uncertainties with continuous mixture models defined on the manifold of camera poses. In highly ambiguous environments, which can easily arise due to symmetries and repetitive structures in the scene, computing one plausible solution (what most state-of-the-art methods currently regress) may not be sufficient. Instead we predict multiple camera pose hypotheses as well as the respective uncertainty for each prediction. Towards this aim, we use Bingham distributions, to model the orientation of the camera pose, and a multivariate Gaussian to model the position, with an end-to-end deep neural network. By incorporating a Winner-Takes-All training scheme, we finally obtain a mixture model that is well suited for explaining ambiguities in the scene, yet does not suffer from mode collapse, a common problem with mixture density networks. We introduce a new dataset specifically designed to foster camera localization research in ambiguous environments and exhaustively evaluate our method on synthetic as well as real data on both ambiguous scenes and on non-ambiguous benchmark datasets. We plan to release our code and dataset under multimodal3dvision.github.io.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://3dwarehouse.sketchup.com/.

References

  1. Arun Srivatsan, R., Xu, M., Zevallos, N., Choset, H.: Probabilistic pose estimation using a Bingham distribution-based linear filter. Int. J. Robot. Res. 37(13–14), 1610–1631 (2018)

    Article  Google Scholar 

  2. Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30(3), 679–693 (2014)

    Article  Google Scholar 

  3. Bingham, C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 1201–1225 (1974)

    Google Scholar 

  4. Birdal, T., Arbel, M., Şimşekli, U., Guibas, L.: Synchronizing probability measures on rotations via optimal transport. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  5. Birdal, T., Bala, E., Eren, T., Ilic, S.: Online inspection of 3D parts via a locally overlapping camera network. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)

    Google Scholar 

  6. Birdal, T., Simsekli, U.: Probabilistic permutation synchronization using the Riemannian structure of the Birkhoff polytope. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11105–11116 (2019)

    Google Scholar 

  7. Birdal, T., Simsekli, U., Eken, M.O., Ilic, S.: Bayesian pose graph optimization via Bingham distributions and tempered geodesic MCMC. In: Advances in Neural Information Processing Systems, pp. 308–319 (2018)

    Google Scholar 

  8. Bishop, C.M.: Mixture density networks (1994)

    Google Scholar 

  9. Bourmaud, G., Mégret, R., Arnaudon, M., Giremus, A.: Continuous-discrete extended Kalman filter on matrix lie groups using concentrated Gaussian distributions. Jo. Math. Imaging Vis. 51(1), 209–228 (2015)

    Article  MathSciNet  Google Scholar 

  10. Brachmann, E., et al.: DSAC-differentiable RANSAC for camera localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Brachmann, E., Michel, F., Krull, A., Ying Yang, M., Gumhold, S., et al.: Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3364–3372 (2016)

    Google Scholar 

  12. Brachmann, E., Rother, C.: Learning less is more-6D camera localization via 3D surface regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4654–4662 (2018)

    Google Scholar 

  13. Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J.: Geometry-aware learning of maps for camera localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2616–2625 (2018)

    Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  15. Bui, M., Albarqouni, S., Ilic, S., Navab, N.: Scene coordinate and correspondence learning for image-based localization. In: British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  16. Busam, B., Birdal, T., Navab, N.: Camera pose filtering with local regression geodesics on the Riemannian manifold of dual quaternions. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2436–2445 (2017)

    Google Scholar 

  17. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  18. Clark, R., Wang, S., Markham, A., Trigoni, N., Wen, H.: VidLoc: a deep spatio-temporal model for 6-DoF video-clip relocalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  19. Corona, E., Kundu, K., Fidler, S.: Pose estimation for objects with rotational symmetry. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7215–7222. IEEE (2018)

    Google Scholar 

  20. Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2090–2096. IEEE (2019)

    Google Scholar 

  21. Deng, H., Birdal, T., Ilic, S.: 3D local features for direct pairwise registration. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  22. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  23. Falorsi, L., de Haan, P., Davidson, T.R., Forré, P.: Reparameterizing distributions on lie groups. arXiv preprint arXiv:1903.02958 (2019)

  24. Feng, W., Tian, F.P., Zhang, Q., Sun, J.: 6D dynamic camera relocalization from single reference image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4049–4057 (2016)

    Google Scholar 

  25. Firman, M., Campbell, N.D., Agapito, L., Brostow, G.J.: DiverseNet: when one right answer is not enough. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5598–5607 (2018)

    Google Scholar 

  26. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  27. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  28. Gilitschenski, I., Sahoo, R., Schwarting, W., Amini, A., Karaman, S., Rus, D.: Deep orientation uncertainty learning based on a Bingham loss. In: International Conference on Learning Representations (2020)

    Google Scholar 

  29. Glover, J., Kaelbling, L.P.: Tracking the spin on a ping pong ball with the quaternion Bingham filter. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4133–4140, May 2014

    Google Scholar 

  30. Glover, J., Bradski, G., Rusu, R.B.: Monte Carlo pose estimation with quaternion kernels and the Bingham distribution. In: Robotics Science System (2012)

    Google Scholar 

  31. Glover, J.M.: The quaternion Bingham distribution, 3D object detection, and dynamic manipulation. Ph.D. thesis, Massachusetts Institute of Technology (2014)

    Google Scholar 

  32. Grassia, F.S.: Practical parameterization of rotations using the exponential map. J. Graph. Tools 3(3), 29–48 (1998)

    Article  Google Scholar 

  33. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1321–1330. JMLR. org (2017)

    Google Scholar 

  34. Guzman-Rivera, A., Batra, D., Kohli, P.: Multiple choice learning: learning to produce multiple structured outputs. In: Advances in Neural Information Processing Systems, pp. 1799–1807 (2012)

    Google Scholar 

  35. Haarbach, A., Birdal, T., Ilic, S.: Survey of higher order rigid body motion interpolation methods for keyframe animation and continuous-time trajectory estimation. In: 2018 Sixth International Conference on 3D Vision (3DV), pp. 381–389. IEEE (2018). https://doi.org/10.1109/3DV.2018.00051

  36. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  37. Herz, C.S.: Bessel functions of matrix argument. Ann. Math. 61(3), 474–523 (1955). http://www.jstor.org/stable/1969810

    Article  MathSciNet  Google Scholar 

  38. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  39. Horaud, R., Conio, B., Leboulleux, O., Lacolle, B.: An analytic solution for the perspective 4-point problem. In: Proceedings CVPR 1989: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE (1989)

    Google Scholar 

  40. Kendall, A., Cipolla, R.: Modelling uncertainty in deep learning for camera relocalization. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4762–4769. IEEE (2016)

    Google Scholar 

  41. Kendall, A., Cipolla, R., et al.: Geometric loss functions for camera pose regression with deep learning. In: Proceedings of CVPR, vol. 3, p. 8 (2017)

    Google Scholar 

  42. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  43. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DoF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  44. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  45. Kume, A., Wood, A.T.: Saddlepoint approximations for the bingham and fisher-bingham normalising constants. Biometrika 92(2), 465–476 (2005)

    Article  MathSciNet  Google Scholar 

  46. Kurz, G., Gilitschenski, I., Julier, S., Hanebeck, U.D.: Recursive estimation of orientation based on the Bingham distribution. In: 2013 16th International Conference on Information Fusion (FUSION), pp. 1487–1494. IEEE (2013)

    Google Scholar 

  47. Kurz, G., et al.: Directional statistics and filtering using libdirectional. arXiv preprint arXiv:1712.09718 (2017)

  48. Labbé, M., Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 36(2), 416–446 (2019)

    Article  Google Scholar 

  49. Makansi, O., Ilg, E., Cicek, O., Brox, T.: Overcoming limitations of mixture density networks: a sampling and fitting framework for multimodal future prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7144–7153 (2019)

    Google Scholar 

  50. Manhardt, F., et al.: Explaining the ambiguity of object detection and 6D pose from visual data. In: International Conference of Computer Vision. IEEE/CVF (2019)

    Google Scholar 

  51. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  52. Massiceti, D., Krull, A., Brachmann, E., Rother, C., Torr, P.H.: Random forests versus neural networks–what’s best for camera localization? In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2017)

    Google Scholar 

  53. Morawiec, A., Field, D.: Rodrigues parameterization for orientation and misorientation distributions. Philos. Mag. A 73(4), 1113–1130 (1996)

    Article  Google Scholar 

  54. Murray, R.M.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  55. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

    Google Scholar 

  56. Peretroukhin, V., Wagstaff, B., Giamou, M., Kelly, J.: Probabilistic regression of rotations using quaternion averaging and a deep multi-headed network. arXiv preprint arXiv:1904.03182 (2019)

  57. Piasco, N., Sidibé, D., Demonceaux, C., Gouet-Brunet, V.: A survey on visual-based localization: on the benefit of heterogeneous data. Pattern Recogn. 74, 90–109 (2018)

    Article  Google Scholar 

  58. Pitteri, G., Ramamonjisoa, M., Ilic, S., Lepetit, V.: On object symmetries and 6D pose estimation from images. In: 3D Vision (3DV). IEEE (2019)

    Google Scholar 

  59. Prokudin, S., Gehler, P., Nowozin, S.: Deep directional statistics: pose estimation with uncertainty quantification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 534–551 (2018)

    Google Scholar 

  60. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3D object detection in point clouds. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  61. Riedel, S., Marton, Z.C., Kriegel, S.: Multi-view orientation estimation using Bingham mixture models. In: 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6. IEEE (2016)

    Google Scholar 

  62. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  Google Scholar 

  63. Rupprecht, C., et al.: Learning in an uncertain world: representing ambiguity through multiple hypotheses. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3591–3600 (2017)

    Google Scholar 

  64. Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H., Davison, A.J.: SLAM++: simultaneous localisation and mapping at the level of objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1352–1359 (2013)

    Google Scholar 

  65. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  66. Sattler, T., Havlena, M., Radenovic, F., Schindler, K., Pollefeys, M.: Hyperpoints and fine vocabularies for large-scale location recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2102–2110 (2015)

    Google Scholar 

  67. Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations of CNN-based absolute camera pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3302–3312 (2019)

    Google Scholar 

  68. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  69. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2930–2937 (2013)

    Google Scholar 

  70. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  71. Suvrit, S., Ley, C., Verdebout, T.: Directional statistics in machine learning: a brief review. In: Applied Directional Statistics. Chapman and Hall/CRC (2018)

    Google Scholar 

  72. Ullman, S.: The interpretation of structure from motion. Proc. Roy. Soc. London. Ser. B. Biol. Sci. 203(1153), 405–426 (1979)

    Google Scholar 

  73. Valentin, J., Nießner, M., Shotton, J., Fitzgibbon, A., Izadi, S., Torr, P.H.: Exploiting uncertainty in regression forests for accurate camera relocalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4400–4408 (2015)

    Google Scholar 

  74. Yamaji, A.: Genetic algorithm for fitting a mixed bingham distribution to 3D orientations: a tool for the statistical and paleostress analyses of fracture orientations. Island Arc 25(1), 72–83 (2016)

    Article  Google Scholar 

  75. Zakharov, S., Shugurov, I., Ilic, S.: DPOD: 6D pose object detector and refiner. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  76. Zeisl, B., Sattler, T., Pollefeys, M.: Camera pose voting for large-scale image-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2704–2712 (2015)

    Google Scholar 

  77. Zolfaghari, M., Çiçek, Ö., Ali, S.M., Mahdisoltani, F., Zhang, C., Brox, T.: Learning representations for predicting future activities. arXiv:1905.03578 (2019)

Download references

Acknowledgements

This project is supported by Bavaria California Technology Center (BaCaTeC), Stanford-Ford Alliance, NSF grant IIS-1763268, Vannevar Bush Faculty Fellowship, Samsung GRO program, the Stanford SAIL Toyota Research, and the PRIME programme of the German Academic Exchange Service (DAAD) with funds from the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Bui .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4717 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, M. et al. (2020). 6D Camera Relocalization in Ambiguous Scenes via Continuous Multimodal Inference. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics