Skip to main content

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

We talk about two calcium (Ca2+) transport elements in this chapter. The annexins (ANN) and mechanosensitive channels (MSc) each represent a unique class of Ca2+ transporters in the plant cell. The MSc, which are divided into mechanosensitive-like channels (MSL), Mid1-complementing channels (MCA), hyperosmolarity-induced [Ca2+]cyt increase’ channels (OSCA), two-pore potassium (TPK) families and Piezo channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G.K. Agrawal, J.J. Thelen, Large scale identification and quantitative profiling of Phosphoproteins expressed during seed filling in oilseed rape. Mol. Cell. Proteomics 5, 2044–2059 (2006)

    Article  CAS  PubMed  Google Scholar 

  • J. Alexandre, J.P. Lassalles, Hydrostatic and osmotic pressure activated channel in plant vacuole. Biophys. J. 60, 1326–1336 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Andrawis, M. Solomon, D.P. Delmer, Cotton fiber annexins: A potential role in the regulation of callose synthase. Plant J. 3, 763–772 (1993)

    Article  CAS  PubMed  Google Scholar 

  • D. Basu, E.S. Haswell, Plant Mechanosensitive ion channels: An ocean of possibilities. Curr. Opin. Plant Biol. 40, 43–48 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D. Basu, E.S. Haswell, The Mechanosensitive Ion Channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Curr. Biol 30, 2716–2728 (2020)

    Article  CAS  PubMed  Google Scholar 

  • C.M. Calvert, S.J. Gant, D.J. Bowles, Tomato annexins p34 and p35 bind to F-actin and display nucleotide phosphodiesterase activity inhibited by phospholipid binding. Plant Cell 8, 333–342 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  • G.B. Clark, A. Sessions, D.J. Eastburn, S.J. Roux, Differential expression of members of the Annexin multigene family in Arabidopsis. Plant Physiol. 126, 1072–1084 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • G.B. Clark, R.O. Morgan, M.P. Fernandez, S.J. Roux, Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol. 196, 695–712 (2012)

    Article  CAS  PubMed  Google Scholar 

  • J.M. Davies, Annexin-mediated calcium Signalling in plants. Plants (Basel) 3, 128–140 (2014)

    Article  CAS  Google Scholar 

  • V. Demidchik, F.J. Maathuis, Physiological roles of nonselective cation channels in plants: From salt stress to signalling and development. New Phytol. 175, 387–404 (2007)

    Article  CAS  PubMed  Google Scholar 

  • V. Demidchik, S. Shabala, Mechanisms of cytosolic calcium elevation in plants: The role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ‘ROS-Ca(2+) Hub’. Funct. Plant Biol. 45, 9–27 (2018)

    Article  CAS  PubMed  Google Scholar 

  • V. Demidchik, S. Shabala, S. Isayenkov, T.A. Cuin, I. Pottosin, Calcium transport across plant membranes: Mechanisms and functions. New Phytol. 220, 49–69 (2018)

    Article  CAS  PubMed  Google Scholar 

  • J.P. Ding, B.G. Pickard, Mechanosensory calcium-selective cation channels in epidermal cells. Plant J. 3, 83–110 (1993)

    Article  CAS  PubMed  Google Scholar 

  • L.C. Falke, K.L. Edwards, B.G. Pickard, S. Misler, A stretch-activated anion channel in tobacco protoplasts. FEBS Lett. 237, 141–144 (1988)

    Article  CAS  PubMed  Google Scholar 

  • T. Furuichi, H. Iida, M. Sokabe, H. Tatsumi, Expression of Arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane. Plant Signal. Behav. 7, 1022–1026 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K.M. Gorecka, C. Thouverey, R. Buchet, S. Pikula, Potential role of annexin AnnAt1 from Arabidopsis thaliana in pH-mediated cellular response to environmental stimuli. Plant Cell Physiol. 48, 792–803 (2007)

    Article  CAS  PubMed  Google Scholar 

  • E.S. Hamilton, E.S. Haswell, The tension-sensitive ion transport activity of MSL8 is critical for its function in pollen hydration and germination. Plant Cell Physiol. 58, 1222–1237 (2017)

    Article  CAS  PubMed  Google Scholar 

  • E.S. Hamilton, A.M. Schlegel, E.S. Haswell, United in diversity: Mechanosensitive ion channels in plants. Annu. Rev. Plant Biol. 66, 113–137 (2015)

    Article  CAS  PubMed  Google Scholar 

  • E.S. Haswell, E.M. Meyerowitz, MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16, 1–11 (2006)

    Article  CAS  PubMed  Google Scholar 

  • E.S. Haswell, R. Peyronnet, H. Barbier-Brygoo, E.M. Meyerowitz, J.M. Frachisse, Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr. Biol. 18, 730–734 (2008)

    Article  CAS  PubMed  Google Scholar 

  • A. Hofmann, J. Proust, A. Dorowski, R. Schantz, R. Huber, Annexin 24 from Capsicum annuum. X-ray structure and biochemical characterization. J. Biol. Chem. 275, 8072–8082 (2000)

    Article  CAS  PubMed  Google Scholar 

  • A. Hofmann, S. Ruvinov, S. Hess, R. Schantz, D.P. Delmer, A. Wlodawer, Plant annexins form calcium-independent oligomers in solution. Protein Sci. 11, 2033–2040 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C. Hou, W. Tian, T. Kleist, K. He, V. Garcia, F. Bai, Y. Hao, S. Luan, L. Li, DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24, 632–635 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N.J. Hu, A.M. Yusof, A. Winter, A. Osman, A.K. Reeve, A. Hofmann, The crystal structure of calcium-bound annexin Gh1 from Gossypium hirsutum and its implications for membrane binding mechanisms of plant annexins. J. Biol. Chem. 283, 18314–18322 (2008)

    Article  CAS  PubMed  Google Scholar 

  • H. Iida, T. Furuichi, M. Nakano, M. Toyota, M. Sokabe, H. Tatsumi, New candidates for mechano-sensitive channels potentially involved in gravity sensing in Arabidopsis thaliana. Plant Biol. (Stuttg.) 16(Suppl 1), 39–42 (2014)

    Article  Google Scholar 

  • S.K. Jami, G.B. Clark, B.T. Ayele, P. Ashe, P.B. Kirti, Genome-wide comparative analysis of Annexin superfamily in plants. PLoS One 7, e47801 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Jojoa-Cruz, K. Saotome, S.E. Murthy, C.C.A. Tsui, M.S. Sansom, A. Patapoutian, A.B. Ward, Cryo-EM structure of the mechanically activated ion channel OSCA1.2. elife 7, e41845 (2018)

    Google Scholar 

  • S. Kamano, S. Kume, K. Iida, K.J. Lei, M. Nakano, Y. Nakayama, H. Iida, Transmembrane topologies of Ca2+−permeable Mechanosensitive channels MCA1 and MCA2 in Arabidopsis thaliana. J. Biol. Chem. 290, 30901–30909 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M.R. Knight, A.K. Campbell, S.M. Smith, A.J. Trewavas, Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524–526 (1991)

    Article  CAS  PubMed  Google Scholar 

  • D. Konopka-Postupolska, G. Clark, Annexins as overlooked regulators of membrane trafficking in plant cells. Int. J. Mol. Sci. 18, 863 (2017)

    Article  CAS  PubMed Central  Google Scholar 

  • D. Konopka-Postupolska, G. Clark, G. Goch, J. Debski, K. Floras, A. Cantero, B. Fijolek, S. Roux, J. Hennig, The role of Annexin 1 in drought stress in Arabidopsis1. Plant Physiol. 150, 1394–1410 (2009)

    Google Scholar 

  • T. Kurusu, D. Nishikawa, Y. Yamazaki, M. Gotoh, M. Nakano, H. Hamada, T. Yamanaka, K. Iida, Y. Nakagawa, H. Saji, K. Shinozaki, H. Iida, K. Kuchitsu, Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC Plant Biol. 12, 11 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Laohavisit, J.M. Davies, Multifunctional annexins. Plant Sci. 177, 532–539 (2009)

    Article  CAS  Google Scholar 

  • A. Laohavisit, J.M. Davies, Annexins. New Phytol. 189, 40–53 (2011)

    Article  CAS  PubMed  Google Scholar 

  • A. Laohavisit, J.C. Mortimer, V. Demidchik, K.M. Coxon, M.A. Stancombe, N. Macpherson, C. Brownlee, A. Hofmann, A.A. Webb, H. Miedema, N.H. Battey, J.M. Davies, Zea mays Annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell 21, 479–493 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Laohavisit, Z. Shang, L. Rubio, T.A. Cuin, A.A. Véry, A. Wang, J.C. Mortimer, N. Macpherson, K.M. Coxon, N.H. Battey, C. Brownlee, O.K. Park, H. Sentenac, S. Shabala, A.A. Webb, J.M. Davies, Arabidopsis Annexin1 mediates the radical-activated plasma membrane Ca2+− and K+-permeable conductance in root cells. Plant Cell 24, 1522–1533 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Laohavisit, S.L. Richards, L. Shabala, C. Chen, R.D. Colaço, S.M. Swarbreck, E. Shaw, A. Dark, S. Shabala, Z. Shang, J.M. Davies, Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein Annexin11. Plant Physiol. 163, 253–262 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C.P. Lee, G. Maksaev, G.S. Jensen, M.W. Murcha, M.E. Wilson, M. Fricker, R. Hell, E.S. Haswell, A.H. Millar, L. Sweetlove, MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J. 88, 809–825 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • E.K. Lim, M.R. Roberts, D.J. Bowles, Biochemical characterization of tomato annexin p35. Independence of calcium binding and phosphatase activities. J. Biol. Chem. 273, 34920–34925 (1998)

    Article  CAS  PubMed  Google Scholar 

  • C. Lindermayr, G. Saalbach, J. Durner, Proteomic identification of S-Nitrosylated proteins in Arabidopsis. Plant Physiol. 137, 921–930 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • X. Liu, J. Wang, L. Sun, Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat. Commun. 9, 5060 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • K. Maity, J.M. Heumann, A.P. McGrath, N.J. Kopcho, P.K. Hsu, C.W. Lee, J.H. Mapes, D. Garza, S. Krishnan, G.P. Morgan, K.J. Hendargo, T. Klose, S.D. Rees, A. Medrano-Soto, M.H. Saier, M. Piñeros, E.A. Komives, J.I. Schroeder, G. Chang, M.H.B. Stowell, Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc. Natl. Acad. Sci. U. S. A. 116, 14309–14318 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • G. Maksaev, E.S. Haswell, MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proc. Natl. Acad. Sci. U. S. A. 109, 19015–19020 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A.D. McClung, A.D. Carroll, N.H. Battey, Identification and characterization of ATPase activity associated with maize (Zea mays) annexins. Biochem. J. 303, 709–712 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P. Montaville, J.M. Neumann, F. Russo-Marie, F. Ochsenbein, A. Sanson, A new consensus sequence for phosphatidylserine recognition by annexins. J. Biol. Chem. 277, 24684–24693 (2002)

    Article  CAS  PubMed  Google Scholar 

  • J.C. Mortimer, A. Laohavisit, N. Macpherson, A. Webb, C. Brownlee, N.H. Battey, J.M. Davies, Annexins: Multifunctional components of growth and adaptation. J. Exp. Bot. 59, 533–544 (2008)

    Article  CAS  PubMed  Google Scholar 

  • S.E. Moss, R.O. Morgan, The annexins. Genome Biol. 5, 219 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  • S.E. Murthy, A.E. Dubin, T. Whitwam, S. Jojoa-Cruz, S.M. Cahalan, S.A.R. Mousavi, A.B. Ward, A. Patapoutian, OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. elife 7, e41844 (2018)

    Google Scholar 

  • Y. Nakagawa, T. Katagiri, K. Shinozaki, Z. Qi, H. Tatsumi, T. Furuichi, A. Kishigami, M. Sokabe, I. Kojima, S. Sato, T. Kato, S. Tabata, K. Iida, A. Terashima, M. Nakano, M. Ikeda, T. Yamanaka, H. Iida, Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc. Natl. Acad. Sci. U. S. A. 104, 3639–3644 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Nakano, K. Iida, H. Nyunoya, H. Iida, Determination of structural regions important for Ca(2+) uptake activity in Arabidopsis MCA1 and MCA2 expressed in yeast. Plant Cell Physiol. 52, 1915–1930 (2011)

    Article  CAS  PubMed  Google Scholar 

  • R. Peyronnet, E.S. Haswell, H. Barbier-Brygoo, J.M. Frachisse, AtMSL9 and AtMSL10: Sensors of plasma membrane tension in Arabidopsis roots. Plant Signal. Behav. 3, 726–729 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  • H.B. Pollard, E. Rojas, Ca2+−activated synexin forms highly selective, voltage-gated Ca2+ channels in phosphatidylserine bilayer membranes. Proc. Natl. Acad. Sci. U. S. A. 85, 2974–2978 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Z. Qi, A. Kishigami, Y. Nakagawa, H. Iida, M. Sokabe, A mechanosensitive anion channel in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol. 45, 1704–1708 (2004)

    Article  CAS  PubMed  Google Scholar 

  • S.L. Richards, A. Laohavisit, J.C. Mortimer, L. Shabala, S.M. Swarbreck, S. Shabala, J.M. Davies, Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots. Plant J. 77, 136–145 (2014)

    Article  CAS  PubMed  Google Scholar 

  • J.S. Rohila, M. Chen, S. Chen, J. Chen, R. Cerny, C. Dardick, P. Canlas, X. Xu, M. Gribskov, S. Kanrar, J.K. Zhu, P. Ronald, M.E. Fromm, Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J. 46, 1–13 (2006)

    Article  CAS  PubMed  Google Scholar 

  • H. Shigematsu, K. Iida, M. Nakano, P. Chaudhuri, H. Iida, K. Nagayama, Structural characterization of the Mechanosensitive Channel candidate MCA2 from Arabidopsis thaliana. PLoS One 9, e87724 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Shin, R.M. Brown, GTPase activity and biochemical characterization of a recombinant cotton Fiber Annexin. Plant Physiol. 119, 925–934 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • E. Spalding, M. Goldsmith, Activation of K+ channels in the plasma membrane of Arabidopsis by ATP produced Photosynthetically. Plant Cell 5, 477–484 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Toyota, T. Furuichi, H. Iida, Molecular Mechanisms of Mechanosensing and Mechanotransduction, in Plant Biomechanics: From Structure to Function at Multiple Scales, ed. by A. Geitmann, J. Gril, (Springer, Cham, 2018), pp. 375–397

    Chapter  Google Scholar 

  • K.M. Veley, G. Maksaev, E.M. Frick, E. January, S.C. Kloepper, E.S. Haswell, Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its Mechanosensitive Ion Channel activity. Plant Cell 26, 3115–3131 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P. Wang, L. Xue, G. Batelli, S. Lee, Y.J. Hou, M.J. Van Oosten, H. Zhang, W.A. Tao, J.K. Zhu, Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U. S. A. 110, 11205–11210 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M.E. Wilson, G. Maksaev, E.S. Haswell, MscS-like Mechanosensitive channels in plants and microbes. Biochemistry 52, 5708–5722 (2013)

    Article  CAS  PubMed  Google Scholar 

  • D. Yadav, P. Boyidi, I. Ahmed, P.B. Kirti, Plant annexins and their involvement in stress responses. Environ. Exp. Bot. 155, 293–306 (2018)

    Article  CAS  Google Scholar 

  • T. Yamanaka, Y. Nakagawa, K. Mori, M. Nakano, T. Imamura, H. Kataoka, A. Terashima, K. Iida, I. Kojima, T. Katagiri, K. Shinozaki, H. Iida, MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol. 152, 1284–1296 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • F. Yuan, H. Yang, Y. Xue, D. Kong, R. Ye, C. Li, J. Zhang, L. Theprungsirikul, T. Shrift, B. Krichilsky, D.M. Johnson, G.B. Swift, Y. He, J.N. Siedow, Z.M. Pei, OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371 (2014)

    Article  CAS  PubMed  Google Scholar 

  • M. Zhang, D. Wang, Y. Kang, J.X. Wu, F. Yao, C. Pan, Z. Yan, C. Song, L. Chen, Structure of the mechanosensitive OSCA channels. Nat. Struct. Mol. Biol. 25, 850–858 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, G.K., Sanyal, S.K. (2021). Annexin and Mechanosensitive Channel. In: Functional Dissection of Calcium Homeostasis and Transport Machinery in Plants. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-030-58502-0_8

Download citation

Publish with us

Policies and ethics