Skip to main content

Sedation; Is it Sleep, Is it Amnesia, What’s the Difference?

  • Chapter
  • First Online:
Pediatric Sedation Outside of the Operating Room

Abstract

This chapter presents recent concepts of the neuroanatomical physiology supporting conscious memory and consciousness. The relationships between sedation, anesthesia, and memory are elaborated. Emphasis is placed on the differences between drug-induced sedation and amnesia. Parallels to sleep physiology are discussed. Memory processes important in learning information from the outside world to form a permanent conscious memory are described in some detail. How the interaction of drug-induced amnestic and sedative properties impairs these processes is presented. Notably amnestic drugs allow conscious memories to be learned, but these are quickly forgotten. Interference with consolidation processes after learning is postulated as the basis for forgetting in the presence of amnestic drug. A review of commonly used sedative and anesthetic agents is undertaken with emphasis on their effects on conscious memory. Propofol, midazolam, and likely ketamine are true amnestic agents. Dexmedetomidine likely has mainly sedative effects. Finally, a number of pediatric case studies are presented to illustrate the clinical implications of amnestic versus sedative drug actions. Preventing unexpected awareness which is subsequently remembered is emphasized, with some recommendations on how to manage such a situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Certain authorities consider dreaming as a form of consciousness as well.

  2. 2.

    http://psychclassics.yorku.ca/Ebbinghaus/memory7.htm last accessed 11/26/2019

  3. 3.

    Memories of a certain age, autobiographical memories, are very resistant to any intervention (though they are malleable, “sepia memories”). Thus HM who could form no new memories still had vivid recollections of memories of childhood, etc.

  4. 4.

    GABA is an inhibitory neurotransmitter, so it turns the receptor “off.”

  5. 5.

    The hypothesis that nitrous oxide could be used as an alternative to ECT to treat major depression is intriguing (http://www.sciencedirect.com/science/article/pii/S0306987709007786 last accessed 6/1/2013), as ketamine (or its oral congeners) is a drug of keen interest to rapidly treat major depression while drugs targeting other receptor systems are ramping up to their antidepressant effect. Berman et al. [198], and Zarate et al. [199].

References

  1. Mashour GA. Sleep, anesthesia, and consciousness. Sleep. 2011;34(3):247–8.

    PubMed  PubMed Central  Google Scholar 

  2. Mashour GA, Alkire MT. Consciousness, anesthesia, and the thalamocortical system. Anesthesiology. 2013;118(1):13–5.

    PubMed  Google Scholar 

  3. Liang Z, Cheng L, Shao S, Jin X, Yu T, Sleigh JW, et al. Information integration and mesoscopic cortical connectivity during propofol anesthesia. Anesthesiology. 2020;132(3):504–24.

    PubMed  Google Scholar 

  4. Mashour GA, Hudetz AG. Bottom-up and top-down mechanisms of general anesthetics modulate different dimensions of consciousness. Front Neural Circuits. 2017;11:44.

    PubMed  PubMed Central  Google Scholar 

  5. Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5(9):709–20.

    CAS  PubMed  Google Scholar 

  6. Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348(21):2110–24.

    CAS  PubMed  Google Scholar 

  7. Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9(5):370–86.

    CAS  PubMed  Google Scholar 

  8. Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363(27):2638–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci. 2011;34:601–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Burgess CR, Scammell TE. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J Neurosci Off J Soc Neurosci. 2012;32(36):12305–11.

    CAS  Google Scholar 

  11. Brown EN, Pavone KJ, Naranjo M. Multimodal general anesthesia: theory and practice. Anesth Analg. 2018;127(5):1246–58.

    PubMed  PubMed Central  Google Scholar 

  12. Kim H. Neural activity that predicts subsequent memory and forgetting: a meta-analysis of 74 fMRI studies. NeuroImage. 2011;54(3):2446–61.

    PubMed  Google Scholar 

  13. Uncapher MR, Rugg MD. Fractionation of the component processes underlying successful episodic encoding: a combined fMRI and divided attention study. J Cogn Neurosci. 2008;20(2):240–54.

    PubMed  Google Scholar 

  14. Hasselmo ME, Stern CE. Mechanisms underlying working memory for novel information. Trends Cogn Sci. 2006;10(11):487–93.

    PubMed  PubMed Central  Google Scholar 

  15. Wager TD, Jonides J, Reading S. Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage. 2004;22(4):1679–93.

    PubMed  Google Scholar 

  16. Clewett DV, Huang R, Velasco R, Lee T-H, Mather M. Locus coeruleus activity strengthens prioritized memories under arousal. J Neurosci. 2018;38(6):1558–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wafford KA, Ebert B. Emerging anti-insomnia drugs: tackling sleeplessness and the quality of wake time. Nat Rev Drug Discov. 2008;7(6):530–40.

    CAS  PubMed  Google Scholar 

  18. Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98(2):428–36.

    CAS  PubMed  Google Scholar 

  19. Huupponen E, Maksimow A, Lapinlampi P, Sarkela M, Saastamoinen A, Snapir A, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand. 2008;52(2):289–94.

    CAS  PubMed  Google Scholar 

  20. McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med. 2007;8(4):302–30.

    PubMed  Google Scholar 

  21. Yu X, Franks NP, Wisden W. Sleep and sedative states induced by targeting the histamine and noradrenergic systems. Front Neural Circuits. 2018;12:4.

    PubMed  PubMed Central  Google Scholar 

  22. Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev. 2018;85:21–33.

    CAS  PubMed  Google Scholar 

  23. Morairty S, Rainnie D, McCarley R, Greene R. Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine: a new mechanism for sleep promotion. Neuroscience. 2004;123(2):451–7.

    CAS  PubMed  Google Scholar 

  24. Fritschy JM, Mohler H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol. 1995;359(1):154–94.

    CAS  PubMed  Google Scholar 

  25. Antkowiak B, Rudolph U. New insights in the systemic and molecular underpinnings of general anesthetic actions mediated by gamma-aminobutyric acid A receptors. Curr Opin Anaesthesiol. 2016;29(4):447–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cunha C, Monfils MH, Ledoux JE. GABA(C) receptors in the lateral amygdala: a possible novel target for the treatment of fear and anxiety disorders? Front Behav Neurosci. 2010;4:6.

    PubMed  PubMed Central  Google Scholar 

  27. Weir CJ, Mitchell SJ, Lambert JJ. Role of GABAA receptor subtypes in the behavioural effects of intravenous general anaesthetics. Br J Anaesth. 2017;119(Suppl_1):i167–i75.

    CAS  PubMed  Google Scholar 

  28. Rudolph U, Moss SJ. Modulating anxiety and activity. Science. 2019;366(6462):185.

    CAS  PubMed  Google Scholar 

  29. Cheng VY, Martin LJ, Elliott EM, Kim JH, Mount HTJ, Taverna FA, et al. {alpha}5GABAA Receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J Neurosci. 2006;26(14):3713–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Squire LR, Wixted JT. The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci. 2011;34:259–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, et al. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci U S A. 2008;105(4):1309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily fluctuation of orexin neuron activity and wiring: the challenge of “chronoconnectivity”. Front Pharmacol. 2018;9:1061.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J, Billington C. Brain orexin promotes obesity resistance. Ann N Y Acad Sci. 2012;1264(1):72–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cirelli C, Tononi G. Linking the need to sleep with synaptic function. Science. 2019;366(6462):189.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hemmings HC, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, et al. Towards a comprehensive understanding of anesthetic mechanisms of action: a decade of discovery. Trends Pharmacol Sci. 2019;40(7):464–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mantz J, Hemmings HC Jr. Sleep and anesthesia: the histamine connection. Anesthesiology. 2011;115(1):8–9.

    PubMed  Google Scholar 

  37. Ghoneim MM, Hinrichs JV. Drugs, memory and sedation: specificity of efects. Anesthesiology. 1997;87(4):734–6.

    CAS  PubMed  Google Scholar 

  38. Veselis RA. The remarkable memory effects of propofol. Br J Anaesth. 2006;96(3):289–91.

    CAS  PubMed  Google Scholar 

  39. Tononi G, Boly M, Massimini M, Koch C. Integrated information theory: from consciousness to its physical substrate. Nat Rev Neurosci. 2016;17(7):450–61.

    CAS  PubMed  Google Scholar 

  40. Sanders RD, Tononi G, Laureys S, Sleigh JW. Unresponsiveness not equal unconsciousness. Anesthesiology. 2012;116(4):946–59.

    PubMed  Google Scholar 

  41. Hwang K, Bertolero MA, Liu WB, D’Esposito M. The human thalamus is an integrative hub for functional brain networks. J Neurosci Off J Soc Neurosci. 2017;37(23):5594–607.

    CAS  Google Scholar 

  42. Mashour GA. Integrating the science of consciousness and anesthesia. Anesth Analg. 2006;103(4):975–82.

    PubMed  Google Scholar 

  43. Tulving E. Organization of memory: Quo vadis. In: The cognitive neurosciences. Cambridge: MIT Press; 1995. p. 839–47.

    Google Scholar 

  44. Tulving E. Episodic memory and common sense: how far apart? Philos Trans R Soc Lond. 2001;356(1413):1505–15.

    CAS  Google Scholar 

  45. Liu X, Lauer KK, Ward BD, Rao SM, Li SJ, Hudetz AG. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory. Hum Brain Mapp. 2012;33(10):2487–98.

    PubMed  Google Scholar 

  46. Imas OA, Ropella KM, Wood JD, Hudetz AG. Isoflurane disrupts anterio-posterior phase synchronization of flash-induced field potentials in the rat. Neurosci Lett. 2006;402(3):216–21.

    CAS  PubMed  Google Scholar 

  47. Veselis R, Reinsel R, Feshchenko V, Beattie B, Akhurst T. Auditory rCBF covariation with word rate during drug-induced sedation and unresponsiveness: a H2015 PET study. Brain Cogn. 2004;54(2):142–4.

    CAS  PubMed  Google Scholar 

  48. Plourde G, Belin P, Chartrand D, Fiset P, Backman SB, Xie G, et al. Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology. 2006;104(3):448–57.

    PubMed  Google Scholar 

  49. Kallionpaa RE, Scheinin A, Kallionpaa RA, Sandman N, Kallioinen M, Laitio R, et al. Spoken words are processed during dexmedetomidine-induced unresponsiveness. Br J Anaesth. 2018;121(1):270–80.

    CAS  PubMed  Google Scholar 

  50. Liu X, Lauer KK, Ward BD, Roberts CJ, Liu S, Gollapudy S, et al. Regional entropy of functional imaging signals varies differently in sensory and cognitive systems during propofol-modulated loss and return of behavioral responsiveness. Brain Imaging Behav. 2019;13(2):514–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghoneim MM, Block RI. Learning and memory during general anesthesia. Anesthesiology. 1997;87(2):387–410.

    CAS  PubMed  Google Scholar 

  52. Hadzidiakos D, Horn N, Degener R, Buchner A, Rehberg B. Analysis of memory formation during general anesthesia (Propofol/Remifentanil) for elective surgery using the process-dissociation procedure. Anesthesiology. 2009;111(2):293–301.

    CAS  PubMed  Google Scholar 

  53. Veselis RA. Memory formation during anaesthesia: plausibility of a neurophysiological basis. Br J Anaesth. 2015;115(suppl 1):i13–i9.

    PubMed  PubMed Central  Google Scholar 

  54. McPherson C, Grunau RE. Neonatal pain control and neurologic effects of anesthetics and sedatives in preterm infants. Clin Perinatol. 2014;41(1):209–27.

    PubMed  Google Scholar 

  55. DiFrancesco MW, Robertson SA, Karunanayaka P, Holland SK. BOLD fMRI in infants under sedation: comparing the impact of pentobarbital and propofol on auditory and language activation. J Magn Reson Imaging. 2013;38(5):1184–95.

    PubMed  Google Scholar 

  56. Saksida LM. Neuroscience. Remembering outside the box. Science. 2009;325(5936):40–1.

    CAS  PubMed  Google Scholar 

  57. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hudetz AG, Imas OA. Burst activation of the cerebral cortex by flash stimuli during isoflurane anesthesia in rats. Anesthesiology. 2007;107(6):983–91.

    CAS  PubMed  Google Scholar 

  59. Hudetz AG, Pearce R. Suppressing the mind: anesthetic modulation of memory and consciousness. Totowa: Humana; 2010. x, 252 p.

    Google Scholar 

  60. Hudetz AG, Vizuete JA, Imas OA. Desflurane selectively suppresses long-latency cortical neuronal response to flash in the rat. Anesthesiology. 2009;111(2):231–9. https://doi.org/10.1097/ALN.0b013e3181ab671e.

    Article  PubMed  Google Scholar 

  61. Lee U, Muller M, Noh GJ, Choi B, Mashour GA. Dissociable network properties of anesthetic state transitions. Anesthesiology. 2011;114(4):872–81.

    PubMed  Google Scholar 

  62. Lee U, Oh G, Kim S, Noh G, Choi B, Mashour GA. Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration. Anesthesiology. 2010;113(5):1081–91.

    PubMed  Google Scholar 

  63. Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci. 2012;109(49):E3377–E86.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Boveroux P, Vanhaudenhuyse A, Bruno M-A, Noirhomme Q, Lauwick S, Luxen A, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology. 2010;113(5):1038–53.

    CAS  PubMed  Google Scholar 

  65. Li D, Vlisides PE, Kelz MB, Avidan MS, Mashour GA, Group ftRS. Dynamic cortical connectivity during general anesthesia in healthy volunteers. Anesthesiology. 2019;130(6):870–84.

    PubMed  Google Scholar 

  66. Puglia MP, Mashour GA. Are there common network-level correlates of the anesthetized brain in infants and adults? Anesthesiology. 2019;131(6):1202–4.

    PubMed  Google Scholar 

  67. Tulving E, Schacter DL. Priming and human memory systems. Science. 1990;247(4940):301–6.

    CAS  PubMed  Google Scholar 

  68. Russell IF. The ability of bispectral index to detect intra-operative wakefulness during total intravenous anaesthesia compared with the isolated forearm technique. Anaesthesia. 2013;68(5):502–11.

    CAS  PubMed  Google Scholar 

  69. Russell IF. The Narcotrend ‘depth of anaesthesia’ monitor cannot reliably detect consciousness during general anaesthesia: an investigation using the isolated forearm technique. Br J Anaesth. 2006;96(3):346–52.

    CAS  PubMed  Google Scholar 

  70. Schneider G, Hollweck R, Ningler M, Stockmanns G, Kochs EF. Detection of consciousness by electroencephalogram and auditory evoked potentials. Anesthesiology. 2005;103(5):934–43.

    PubMed  Google Scholar 

  71. Schneider G, Kochs EF, Horn B, Kreuzer M, Ningler M. Narcotrend does not adequately detect the transition between awareness and unconsciousness in surgical patients. Anesthesiology. 2004;101(5):1105–11.

    PubMed  Google Scholar 

  72. Brown EN, Purdon PL, Akeju O, An J. Using EEG markers to make inferences about anaesthetic-induced altered states of arousal. Br J Anaesth. 2018;121(1):325–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaskell A, Sanders RD, Sleigh J. Using EEG markers to titrate anaesthesia. Br J Anaesth. 2018;121(1):327–9.

    CAS  PubMed  Google Scholar 

  74. Sanders RD, Gaskell A, Raz A, Winders J, Stevanovic A, Rossaint R, et al. Incidence of connected consciousness after tracheal intubation: a prospective, international, multicenter cohort study of the isolated forearm technique. Anesthesiology. 2017;126(2):214–22.

    PubMed  Google Scholar 

  75. Pryor KO, Reinsel RA, Mehta M, Li Y, Wixted JT, Veselis RA. Visual P2-N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans. Anesthesiology. 2010;113(2):313–26.

    CAS  PubMed  Google Scholar 

  76. Veselis RA, Reinsel RA, Feshchenko VA, Johnson R Jr. Information loss over time defines the memory defect of propofol: a comparative response with thiopental and dexmedetomidine. Anesthesiology. 2004;101(4):831–41.

    CAS  PubMed  Google Scholar 

  77. Veselis RA, Reinsel RA, Feshchenko VA, Wronski M. The comparative amnestic effects of midazolam, propofol, thiopental, and fentanyl at equisedative concentrations. Anesthesiology. 1997;87(4):749–64.

    CAS  PubMed  Google Scholar 

  78. Russell IF. Intraoperative awareness and the isolated forearm technique [letter] [see comments]. Br J Anaesth. 1995;75(6):819–21.

    CAS  PubMed  Google Scholar 

  79. Russell IF. Fourteen fallacies about the isolated forearm technique, and its place in modern anaesthesia. Anaesthesia. 2013;68(7):677–81.

    CAS  PubMed  Google Scholar 

  80. Nordstrom O, Sandin R. Recall during intermittent propofol anaesthesia. Br J Anaesth. 1996;76(5):699–701.

    CAS  PubMed  Google Scholar 

  81. Ghoneim MM, Dembo JB, Block RI. Time course of antagonism of sedative and amnesic effects of diazepam by flumazenil. Anesthesiology. 1989;70:899–904.

    CAS  PubMed  Google Scholar 

  82. Hebb DO. The organization of behavior; a neuropsychological theory. New York: Wiley; 1949. xix, 335 p.

    Google Scholar 

  83. Fernandez G, Effern A, Grunwald T, Pezer N, Lehnert K, Duempelmann M, et al. Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science. 1999;285(5433):1582–5.

    CAS  PubMed  Google Scholar 

  84. Fields RD. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci. 2015;16(12):756–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron. 2020;105(1):150–164.e6.

    CAS  PubMed  Google Scholar 

  86. Asok A, Leroy F, Rayman JB, Kandel ER. Molecular mechanisms of the memory trace. Trends Neurosci. 2019;42(1):14–22.

    CAS  PubMed  Google Scholar 

  87. McGaugh JL. Memory--a century of consolidation. Science. 2000;287(5451):248–51.

    CAS  PubMed  Google Scholar 

  88. Izquierdo I, Bevilaqua LR, Rossato JI, Bonini JS, Medina JH, Cammarota M. Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 2006;29(9):496–505.

    CAS  PubMed  Google Scholar 

  89. Veselis RA. Complexities of human memory: relevance to anaesthetic practice. Br J Anaesth. 2018;121(1):210–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Johansson M, Aslan A, Bauml K-H, Gabel A, Mecklinger A. When remembering causes forgetting: electrophysiological correlates of retrieval-induced forgetting. Cereb Cortex. 2006;eAP:jul31 bhl044.

    Google Scholar 

  91. Miller G. Forgetting and remembering. Learning to forget. Science. 2004;304(5667):34–6.

    CAS  PubMed  Google Scholar 

  92. Wagner AD, Davachi L. Cognitive neuroscience: forgetting of things past. Curr Biol. 2001;11(23):R964–7.

    CAS  PubMed  Google Scholar 

  93. Wixted JT. A theory about why we forget what we once knew. Curr Dir Psychol Sci. 2005;14(1):6–9.

    Google Scholar 

  94. Loftus EF. Planting misinformation in the human mind: a 30-year investigation of the malleability of memory. Learn Mem. 2005;12:361–6.

    PubMed  Google Scholar 

  95. Loftus EF. Eavesdropping on memory. Annu Rev Psychol. 2017;68(1):1–18.

    PubMed  Google Scholar 

  96. Cahill L. The neurobiology of emotionally influenced memory. Implications for understanding traumatic memory. Ann N Y Acad Sci. 1997;821:238–46.

    CAS  PubMed  Google Scholar 

  97. Leslie K, Chan MTV, Myles PS, Forbes A, McCulloch TJ. Posttraumatic stress disorder in aware patients from the B-Aware trial. Anesth Analg. 2010;110(3):823–8.

    PubMed  Google Scholar 

  98. Reist C, Duffy JG, Fujimoto K, Cahill L. Beta-adrenergic blockade and emotional memory in PTSD. Int J Neuropsychopharmacol. 2001;4(4):377–83.

    CAS  PubMed  Google Scholar 

  99. Whitlock EL, Rodebaugh TL, Hassett AL, Shanks AM, Kolarik E, Houghtby J, et al. Psychological sequelae of surgery in a prospective cohort of patients from three intraoperative awareness prevention trials. Anesth Analg. 2015;120(1):87–95.

    PubMed  PubMed Central  Google Scholar 

  100. Wixted JT, Carpenter SK. The Wickelgren power law and the Ebbinghaus savings function. Psychol Sci. 2007;18(2):133–4.

    PubMed  Google Scholar 

  101. Zola-Morgan S, Squire LR. Neuroanatomy of memory. Annu Rev Neurosci. 1993;16:547–63.

    CAS  PubMed  Google Scholar 

  102. Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci Off J Soc Neurosci. 1986;6(10):2950–67.

    CAS  Google Scholar 

  103. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hebb DO, Penfield W. Human behavior after extensive bilateral removal from the frontal lobes. Arch Neurol Psychiatr. 1940;44(2):421–38.

    Google Scholar 

  105. Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci. 2007;11(10):442–50.

    PubMed  Google Scholar 

  106. Andrade KC, Spoormaker VI, Dresler M, Wehrle R, Holsboer F, Sämann PG, et al. Sleep spindles and hippocampal functional connectivity in human NREM sleep. J Neurosci. 2011;31(28):10331–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M, et al. Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci. 2007;104(47):18778–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gais S, Born J. Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem. 2004;11(6):679–85.

    PubMed  PubMed Central  Google Scholar 

  109. Rudoy JD, Voss JL, Westerberg CE, Paller KA. Strengthening individual memories by reactivating them during sleep. Science. 2009;326(5956):1079.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93(2):681–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Parker ES, Cahill L, McGaugh JL. A case of unusual autobiographical remembering. Neurocase. 2006;12(1):35–49.

    PubMed  Google Scholar 

  112. Veselis RA, Pryor KO, Reinsel RA, Li Y, Mehta M, Johnson R Jr. Propofol and midazolam inhibit conscious memory processes very soon after encoding: an event-related potential study of familiarity and recollection in volunteers. Anesthesiology. 2009;110(2):295–312.

    CAS  PubMed  Google Scholar 

  113. Storer KP, Reeke GN. Gamma-aminobutyric acid receptor type A receptor potentiation reduces firing of neuronal assemblies in a computational cortical model. Anesthesiology. 2012;117(4):780–90.

    PubMed  Google Scholar 

  114. Storer KP, Reeke GN. γ-aminobutyric acid type a receptor potentiation inhibits learning in a computational network model. Anesthesiology. 2018;129(1):106–17.

    CAS  PubMed  Google Scholar 

  115. Perouansky M, Rau V, Ford T, Oh SI, Perkins M, Eger EI 2nd, et al. Slowing of the hippocampal theta rhythm correlates with anesthetic-induced amnesia. Anesthesiology. 2010;113(6):1299–309.

    CAS  PubMed  Google Scholar 

  116. Zurek AA, Yu J, Wang DS, Haffey SC, Bridgwater EM, Penna A, et al. Sustained increase in alpha5GABAA receptor function impairs memory after anesthesia. J Clin Invest. 2014;124(12):5437–41.

    PubMed  PubMed Central  Google Scholar 

  117. Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology. 2013;118(6):1264–75. https://doi.org/10.1097/ALN.0b013e31829103f5.

    Article  CAS  PubMed  Google Scholar 

  118. Vlisides PE, Bel-Bahar T, Nelson A, Chilton K, Smith E, Janke E, et al. Subanaesthetic ketamine and altered states of consciousness in humans. Br J Anaesth. 2018;121(1):249–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Scheinin A, Kallionpää RE, Li D, Kallioinen M, Kaisti K, Långsjö J, et al. Differentiating drug-related and state-related effects of dexmedetomidine and propofol on the electroencephalogram. Anesthesiology. 2018;129(1):22–36.

    CAS  PubMed  Google Scholar 

  120. Lee U, Mashour GA. Role of network science in the study of anesthetic state transitions. Anesthesiology. 2018;129(5):1029–44.

    PubMed  Google Scholar 

  121. Vlisides PE, Bel-Bahar T, Lee U, Li D, Kim H, Janke E, et al. Neurophysiologic correlates of ketamine sedation and anesthesia: a high-density electroencephalography study in healthy volunteers. Anesthesiology. 2017;127(1):58–69.

    CAS  PubMed  Google Scholar 

  122. Mashour GA. Network inefficiency: a Rosetta stone for the mechanism of anesthetic-induced unconsciousness. Anesthesiology. 2017;126(3):366–8.

    PubMed  Google Scholar 

  123. Tononi G. Integrated information theory of consciousness: an updated account. Arch Ital Biol. 2012;150(2–3):56–90.

    CAS  PubMed  Google Scholar 

  124. Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G, et al. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci U S A. 2010;107(6):2681–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hudetz AG, Vizuete JA, Pillay S. Differential effects of Isoflurane on high-frequency and low-frequency γ oscillations in the cerebral cortex and hippocampus in freely moving rats. Anesthesiology. 2011;114(3):588–95.

    CAS  PubMed  Google Scholar 

  126. Liu X, Lauer KK, Ward BD, Li S-J, Hudetz AG. Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a functional magnetic resonance imaging study. Anesthesiology. 2013;118(1):59–69. https://doi.org/10.1097/ALN.0b013e318277a801.

    Article  CAS  PubMed  Google Scholar 

  127. Baddeley A. The fractionation of working memory. Proc Natl Acad Sci U S A. 1996;93(24):13468–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Baddeley A. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–23.

    CAS  PubMed  Google Scholar 

  129. Schlosser RG, Wagner G, Sauer H. Assessing the working memory network: studies with functional magnetic resonance imaging and structural equation modeling. Neuroscience. 2006;139(1):91–103.

    CAS  PubMed  Google Scholar 

  130. Miller GA. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev. 1956;63:81–97.

    CAS  PubMed  Google Scholar 

  131. Lisman JE, Idiart MA. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science. 1995;267(5203):1512–5.

    CAS  PubMed  Google Scholar 

  132. Mason KP, Kelhoffer ER, Prescilla R, Mehta M, Root JC, Young VJ, et al. Feasibility of measuring memory response to increasing dexmedetomidine sedation in children. Br J Anaesth. 2017;118(2):254–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Veselis R, Kelhoffer E, Mehta M, Root JC, Robinson F, Mason KP. Propofol sedation in children: sleep trumps amnesia. Sleep Med. 2016;27–8:115–20.

    Google Scholar 

  134. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76(3):334–41.

    CAS  PubMed  Google Scholar 

  135. Rupreht J. Awareness with amnesia during total intravenous anaesthesia with propofol [letter]. Anaesthesia. 1989;44(12):1005.

    CAS  PubMed  Google Scholar 

  136. Bennett S. Propofol and awareness [letter; comment]. Anesthesiology. 1992;77(6):1232–3; discussion 3–4.

    CAS  PubMed  Google Scholar 

  137. Cox RG. Propofol and awareness [letter; comment]. Anesthesiology. 1992;77(6):1232; discussion 3–4.

    CAS  PubMed  Google Scholar 

  138. Tasch MD. Propofol and awareness [letter; comment]. Anesthesiology. 1992;77(6):1232; discussion 3–4.

    CAS  PubMed  Google Scholar 

  139. Veselis RA, Reinsel RA, Wronski M, Marino P, Tong WP, Bedford RF. EEG and memory effects of low-dose infusions of propofol. Br J Anaesth. 1992;69(3):246–54.

    CAS  PubMed  Google Scholar 

  140. Veselis RA, Pryor KO, Reinsel RA, Mehta M, Pan H, Johnson R Jr. Low-dose propofol-induced amnesia is not due to a failure of encoding: left inferior prefrontal cortex is still active. Anesthesiology. 2008;109(2):213–24.

    CAS  PubMed  Google Scholar 

  141. McDaniel WW, Sahota AK, Vyas BV, Laguerta N, Hategan L, Oswald J. Ketamine appears associated with better word recall than etomidate after a course of 6 electroconvulsive therapies. J ECT. 2006;22(2):103–6.

    CAS  PubMed  Google Scholar 

  142. Gregory-Roberts EM, Naismith SL, Cullen KM, Hickie IB. Electroconvulsive therapy-induced persistent retrograde amnesia: could it be minimised by ketamine or other pharmacological approaches? J Affect Disord. 2010;126(1–2):39–45.

    CAS  PubMed  Google Scholar 

  143. Ghoneim MM, Block RI. Immediate peri-operative memory. Acta Anaesthesiol Scand. 2007;51(8):1054–61.

    CAS  PubMed  Google Scholar 

  144. Grunwald T, Beck H, Lehnertz K, Blumcke I, Pezer N, Kurthen M, et al. Evidence relating human verbal memory to hippocampal N-methyl-D- aspartate receptors. PNAS. 1999;96(21):12085–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Grunwald T, Kurthen M. Novelty detection and encoding for declarative memory within the human hippocampus. Clin EEG Neurosci. 2006;37(4):309–14.

    PubMed  Google Scholar 

  146. Low K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science. 2000;290(5489):131–4.

    CAS  PubMed  Google Scholar 

  147. Whiting PJ. GABA-A receptors: a viable target for novel anxiolytics? Curr Opin Pharmacol. 2006;6(1):24–9.

    CAS  PubMed  Google Scholar 

  148. Curran HV. Tranquillising memories: a review of the effects of benzodiazepines on human memory. Biol Psychol. 1986;23(2):179–213.

    CAS  PubMed  Google Scholar 

  149. Reves JG, Fragen RJ, Vinik HR, Greenblatt DJ. Midazolam: pharmacology and uses. Anesthesiology. 1985;62:310–24.

    CAS  PubMed  Google Scholar 

  150. Pollard RJ, Coyle JP, Gilbert RL, Beck JE. Intraoperative awareness in a regional medical system: a review of 3 years’ data. Anesthesiology. 2007;106(2):269–74.

    PubMed  Google Scholar 

  151. Tobias JD. Dexmedetomidine and ketamine: an effective alternative for procedural sedation? Pediatr Crit Care Med. 2012;13(4):423–7.

    PubMed  Google Scholar 

  152. Loix S, De Kock M, Henin P. The anti-inflammatory effects of ketamine: state of the art. Acta Anaesthesiol Belg. 2011;62(1):47–58.

    CAS  PubMed  Google Scholar 

  153. Anand KJ, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62(3):283–90.

    CAS  PubMed  Google Scholar 

  154. Hudetz JA, Iqbal Z, Gandhi SD, Patterson KM, Byrne AJ, Hudetz AG, et al. Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery. Acta Anaesthesiol Scand. 2009;53(7):864–72.

    CAS  PubMed  Google Scholar 

  155. Fletcher PC, Honey GD. Schizophrenia, ketamine and cannabis: evidence of overlapping memory deficits. Trends Cogn Sci. 2006;10(4):167–74.

    PubMed  Google Scholar 

  156. Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20(2):106–18.

    CAS  PubMed  Google Scholar 

  157. De La Torre R. Commentary on Morgan et al. (2010): ketamine abuse: first medical evidence of harms we should confront. Addiction. 2010;105(1):134–5.

    Google Scholar 

  158. Muetzelfeldt L, Kamboj SK, Rees H, Taylor J, Morgan CJ, Curran HV. Journey through the K-hole: phenomenological aspects of ketamine use. Drug Alcohol Depend. 2008;95(3):219–29.

    CAS  PubMed  Google Scholar 

  159. Morgan CJ, Curran HV. Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology. 2006;188(4):408–24.

    CAS  PubMed  Google Scholar 

  160. Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV. Ketamine impairs response inhibition and is positively reinforcing in healthy volunteers: a dose-response study. Psychopharmacology. 2004;172(3):298–308.

    CAS  PubMed  Google Scholar 

  161. Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV. Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology. 2004;29(1):208–18.

    CAS  PubMed  Google Scholar 

  162. Grunwald M, Weiss T, Krause W, Beyer L, Rost R, Gutberlet I, et al. Power of theta waves in the EEG of human subjects increases during recall of haptic information. Neurosci Lett. 1999;260(3):189–92.

    CAS  PubMed  Google Scholar 

  163. Forman SA. Clinical and molecular pharmacology of etomidate. Anesthesiology. 2011;114(3):695–707.

    CAS  PubMed  Google Scholar 

  164. Ghoneim MM, Yamada T. Etomidate: a clinical and electroencephalographic comparison with thiopental. Anesth Analg. 1977;56(4):479–85.

    CAS  PubMed  Google Scholar 

  165. Gallagher CS Jr, Hann JR. Clinical assessment of etomidate for outpatient general anesthesia: a preliminary evaluation. J Oral Maxillofac Surg. 1985;43(11):860–4.

    PubMed  Google Scholar 

  166. Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci. 2008;9(5):331–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci. 2005;6(3):215–29.

    CAS  PubMed  Google Scholar 

  168. Banks MI, Pearce RA. Kinetic differences between synaptic and extrasynaptic GABA(A) receptors in CA1 pyramidal cells. J Neurosci Off J Soc Neurosci. 2000;20(3):937–48.

    CAS  Google Scholar 

  169. Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A. 2004;101(10):3662–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mortensen M, Patel B, Smart TG. GABA potency at GABAA receptors found in synaptic and extrasynaptic zones. Front Cell Neurosci. 2012;6:1.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Osborn AG, Bunker JP, Cooper LM, Frank GS, Hilgard ER. Effects of thiopental sedation on learning and memory. Science. 1967;157(788):574–6.

    CAS  PubMed  Google Scholar 

  172. Mason KP, Prescilla R, Fontaine PJ, Zurakowski D. Pediatric CT sedation: comparison of dexmedetomidine and pentobarbital. AJR Am J Roentgenol. 2011;196(2):W194–8.

    PubMed  Google Scholar 

  173. de Sousa SL, Dickinson R, Lieb WR, Franks NP. Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon [see comments]. Anesthesiology. 2000;92(4):1055–66.

    PubMed  Google Scholar 

  174. Mennerick S, Jevtovic-Todorovic V, Todorovic SM, Shen W, Olney JW, Zorumski CF. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci Off J Soc Neurosci. 1998;18(23):9716–26.

    CAS  Google Scholar 

  175. Jevtovic-Todorovic V, Todorovic SM, Mennerick S, Powell S, Dikranian K, Benshoff N, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin [see comments]. Nat Med. 1998;4(4):460–3.

    CAS  PubMed  Google Scholar 

  176. Dwyer R, Bennett HL, Eger EI 2nd, Heilbron D. Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology. 1992;77(5):888–98.

    CAS  PubMed  Google Scholar 

  177. Duarte R, McNeill A, Drummond G, Tiplady B. Comparison of the sedative, cognitive, and analgesic effects of nitrous oxide, sevoflurane, and ethanol. Br J Anaesth. 2008;100(2):203–10.

    PubMed  Google Scholar 

  178. Hemmings HC Jr, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26(10):503–10.

    CAS  PubMed  Google Scholar 

  179. Hemmings H. Molecular anesthetic targets. In: Hudetz AG, Pearce R, editors. Suppressing the mind: anesthetic modulation of memory and consciousness. Contemporary clinical neuroscience. Totowa: Humana; 2010. p. 11–31, 252 pp.

    Google Scholar 

  180. Galinkin JL, Janiszewski D, Young CJ, Klafta JM, Klock PA, Coalson DW, et al. Subjective, psychomotor, cognitive, and analgesic effects of subanesthetic concentrations of sevoflurane and nitrous oxide. Anesthesiology. 1997;87(5):1082–8.

    CAS  PubMed  Google Scholar 

  181. Ball C. Hewitt’s nitrous oxide-oxygen inhaler. Anaesth Intensive Care. 1993;21(6):733.

    CAS  PubMed  Google Scholar 

  182. Ball C. Clover’s nitrous oxide/ether inhaler 1876. Anaesth Intensive Care. 1993;21(3):273.

    CAS  PubMed  Google Scholar 

  183. Janiszewski DJ, Galinkin JL, Klock PA, Coalson DW, Pardo H, Zacny JP. The effects of subanesthetic concentrations of sevoflurane and nitrous oxide, alone and in combination, on analgesia, mood, and psychomotor performance in healthy volunteers. Anesth Analg. 1999;88(5):1149–54.

    CAS  PubMed  Google Scholar 

  184. Pirec V, Patterson TH, Thapar P, Apfelbaum JL, Zacny JP. Effects of subanesthetic concentrations of nitrous oxide on cold-pressor pain in humans. Pharmacol Biochem Behav. 1995;51(2–3):323–9.

    CAS  PubMed  Google Scholar 

  185. Kent CD, Mashour GA, Metzger NA, Posner KL, Domino KB. Psychological impact of unexpected explicit recall of events occurring during surgery performed under sedation, regional anaesthesia, and general anaesthesia: data from the Anesthesia Awareness Registry. Br J Anaesth. 2013;110(3):381–7.

    CAS  PubMed  Google Scholar 

  186. Neill E, Rossell SL, McDonald S, Joshua N, Jansen N, Morgan CJ. Using ketamine to model semantic deficits in schizophrenia. J Clin Psychopharmacol. 2011;31(6):690–7.

    CAS  PubMed  Google Scholar 

  187. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology. 2001;25(4):455–67.

    CAS  PubMed  Google Scholar 

  188. LaPorte DJ, Lahti AC, Koffel B, Tamminga CA. Absence of ketamine effects on memory and other cognitive functions in schizophrenia patients. J Psychiatr Res. 1996;30(5):321–30.

    CAS  PubMed  Google Scholar 

  189. Lahti AC, Koffel B, LaPorte D, Tamminga CA. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology. 1995;13(1):9–19.

    CAS  PubMed  Google Scholar 

  190. Carpenter WT Jr. The schizophrenia ketamine challenge study debate. Biol Psychiatry. 1999;46(8):1081–91.

    PubMed  Google Scholar 

  191. Ulgey A, Aksu R, Bicer C, Akin A, Altuntas R, Esmaoglu A, et al. Is the addition of dexmedetomidine to a ketamine-propofol combination in pediatric cardiac catheterization sedation useful? Pediatr Cardiol. 2012;33(5):770–4.

    PubMed  Google Scholar 

  192. Raman V, Yacob D, Tobias JD. Dexmedetomidine-ketamine sedation during upper gastrointestinal endoscopy and biopsy in a patient with Duchenne muscular dystrophy and egg allergy. Int J Crit Illn Inj Sci. 2012;2(1):40–3.

    PubMed  PubMed Central  Google Scholar 

  193. Mester R, Easley RB, Brady KM, Chilson K, Tobias JD. Monitored anesthesia care with a combination of ketamine and dexmedetomidine during cardiac catheterization. Am J Ther. 2008;15(1):24–30.

    PubMed  Google Scholar 

  194. Mason KP, Lubisch N, Robinson F, Roskos R, Epstein MA. Intramuscular dexmedetomidine: an effective route of sedation preserves background activity for pediatric electroencephalograms. J Pediatr. 2012;161(5):927–32.

    CAS  PubMed  Google Scholar 

  195. Ghali AM, Mahfouz AK, Al-Bahrani M. Preanesthetic medication in children: a comparison of intranasal dexmedetomidine versus oral midazolam. Saudi J Anaesth. 2011;5(4):387–91.

    PubMed  PubMed Central  Google Scholar 

  196. Brown EN, Pavone KJ, Naranjo M. Multimodal general anesthesia: theory and practice. Anesth Analg. 2020;127(5):1246–58.

    Google Scholar 

  197. Whiting PJ. GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today. 2003;8(10):445–50.

    CAS  PubMed  Google Scholar 

  198. Berman RM, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.

    CAS  PubMed  Google Scholar 

  199. Zarate CA Jr, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Veselis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veselis, R.A., Arslan-Carlon, V. (2021). Sedation; Is it Sleep, Is it Amnesia, What’s the Difference?. In: Mason, MD, K.P. (eds) Pediatric Sedation Outside of the Operating Room. Springer, Cham. https://doi.org/10.1007/978-3-030-58406-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58406-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58405-4

  • Online ISBN: 978-3-030-58406-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics