Skip to main content

Bacterial Power: An Alternative Energy Source

  • Chapter
  • First Online:
Enzymes for Solving Humankind's Problems

Abstract

The demand for energy and the limited supply of fossil fuels and their impact in the environment have required the development of alternative energy sources. Among the next generation of energy sources, microbial fuel cells (MFCs) have emerged as a promising technology due to their ability to recover energy from wastewaters in the form of electricity using electroactive microorganisms as catalysts. Among the various factors that affect power generation performance in MFCs, the efficiency of extracellular electron transfer (EET) is one of the most important. Several enzymes, specifically multiheme cytochromes, have been implicated in this process although the electron transfer chain organization remains to be fully understood. In this chapter, we review in detail the mechanisms that support EET from electroactive microorganisms to the anode in MFCs. We focus on the model organism Shewanella oneidensis MR-1, due to the existence of an extensive molecular characterization of its EET processes. The recent developments in the characterization of the multiheme cytochromes involved in these mechanisms will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logan BE, Wallack MJ, Kim K, He W, Feng Y, Saikaly PE (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2:206–214. https://doi.org/10.1021/acs.estlett.5b00180

    Article  CAS  Google Scholar 

  2. Prévoteau A, Carvajal-Arroyo JM, Ganigué R, Rabaey K (2020) Microbial electrosynthesis from CO2: forever a promise? Curr Opin Biotechnol 62:48–57. https://doi.org/10.1016/j.copbio.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  3. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716. https://doi.org/10.1038/nrmicro2422

    Article  CAS  PubMed  Google Scholar 

  4. Modin O, Aulenta F, Harnisch F, Patil SA, Carmona-Martinez AA, Agarwal S, Zhang Y, Sinha-Ray S, Yarin AL, Greiner A, Schröder U, Landis R, Griffith R, Shoemaker S, Smolders E, Sorensen SR, Springael D, van Breukelen BM (2017) Three promising applications of microbial electrochemistry for the water sector. Environ Sci Water Res Technol 156:1–13. https://doi.org/10.1039/C6EW00325G

    Article  CAS  Google Scholar 

  5. Mohan SV, Velvizhi G, Krishna KV, Babu ML (2014) Bioresource technology microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour Technol 165:355–364. https://doi.org/10.1016/j.biortech.2014.03.048

  6. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046. https://doi.org/10.1021/ES0499344

    Article  CAS  PubMed  Google Scholar 

  7. Slate AJ, Whitehead KA, Brownson DAC, Banks CE (2019) Microbial fuel cells: an overview of current technology. Renew Sustain Energy Rev 101:60–81. https://doi.org/10.1016/j.rser.2018.09.044

    Article  CAS  Google Scholar 

  8. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459. https://doi.org/10.1016/j.tibtech.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  9. Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629. https://doi.org/10.1039/B703627M

  10. Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346. https://doi.org/10.1021/es062644y

    Article  CAS  PubMed  Google Scholar 

  11. Pant D, Singh A, Van Bogaert G, Irving Olsen S, Singh Nigam P, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263. https://doi.org/10.1039/C1RA00839K

    Article  CAS  Google Scholar 

  12. Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17. https://doi.org/10.1111/j.1574-6976.2009.00191.x

    Article  CAS  PubMed  Google Scholar 

  13. Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8:513–519. https://doi.org/10.1039/C4EE03359K

    Article  CAS  Google Scholar 

  14. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London B Biol Sci 84

    Google Scholar 

  15. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671. https://doi.org/10.1007/s00253-009-2378-9

    Article  CAS  PubMed  Google Scholar 

  16. Logan BE, Rossi R, Ragab A, Saikaly PE (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17:307–319. https://doi.org/10.1038/s41579-019-0173-x

  17. Babauta JT, Nguyen HD, Istanbullu O, Beyenal H (2013) Microscale gradients of oxygen, hydrogen peroxide, and pH in freshwater cathodic biofilms. Chemsuschem 6:1252–1261. https://doi.org/10.1002/cssc.201300019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Glaven SM (2019) Bioelectrochemical systems and synthetic biology: more power, more products. Microb Biotechnol 12:819–823. https://doi.org/10.1111/1751-7915.13456

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li F, Wang L, Liu C, Wu D, Song H (2018) Engineering exoelectrogens by synthetic biology strategies. Curr Opin Electrochem 10:37–45. https://doi.org/10.1016/j.coelec.2018.03.030

    Article  CAS  Google Scholar 

  20. Teravest MA, Ajo-Franklin CM (2015) Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol Bioeng 113:687–697. https://doi.org/10.1002/bit.25723

    Article  CAS  PubMed  Google Scholar 

  21. Richardson DJ (2000) Bacterial respiration: A flexibe process for a changing environment. Microbiology 146:551–571. https:// doi:https://doi.org/10.1099/00221287-146-3-551

  22. White GF, Edwards MJ, Gomez-Perez L, Richardson DJ, Butt JN, Clarke TA (2016) Mechanisms of bacterial extracellular electron exchange. In: Advances in microbial physiology, pp 87–138

    Google Scholar 

  23. Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu HQ, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662. https://doi.org/10.1038/nrmicro.2016.93

    Article  CAS  PubMed  Google Scholar 

  24. Gralnick JA, Newman DK (2007) Micro review extracellular respiration. Mol Microbiol 65:1–11. https://doi.org/10.1111/j.1365-2958.2007.05778.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar A, Hsu LHH, Kavanagh P, Barrière F, Lens PNL, Lapinsonnière L, Lienhard JH, Schröder U, Jiang X, Leech D (2017) The ins and outs of microorganism-electrode electron transfer reactions. Nat Rev Chem 1:1–13. https://doi.org/10.1038/s41570-017-0024

  26. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321. https://doi.org/10.1126/science.240.4857.1319

    Article  CAS  PubMed  Google Scholar 

  27. Lower SK (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha -FeOOH. Science 292:1360–1363. https://doi.org/10.1126/science.1059567

    Article  CAS  PubMed  Google Scholar 

  28. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101. https://doi.org/10.1038/nature03661

    Article  CAS  PubMed  Google Scholar 

  29. Costa NL, Clarke TA, Philipp L-AA, Gescher J, Louro RO, Paquete CM (2018) Electron transfer process in microbial electrochemical technologies: the role of cell-surface exposed conductive proteins. Bioresour Technol 255:308–317. https://doi.org/10.1016/j.biortech.2018.01.133

    Article  CAS  PubMed  Google Scholar 

  30. Shi L, Rosso KM, Zachara JM, Fredrickson JK (2012) Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. Biochem Soc Trans 40:1261–1267. https://doi.org/10.1042/BST20120098

    Article  CAS  PubMed  Google Scholar 

  31. Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM, Fredrickson JK (2012) Molecular underpinnings of Fe (III) oxide reduction by Shewanella oneidensis MR-1. Front Microbiol 3:1–10. https://doi.org/10.3389/fmicb.2012.00050

    Article  Google Scholar 

  32. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20. https://doi.org/10.1111/j.1365-2958.2007.05783.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402:47–52. https://doi.org/10.1038/46972

    Article  CAS  PubMed  Google Scholar 

  34. Warren JJ, Ener ME, Vlček A, Winkler JR, Gray HB (2012) Electron hopping through proteins. Coord Chem Rev 256:2478–2487. https://doi.org/10.1016/j.ccr.2012.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harris HW, El-Naggar MY, Nealson KH (2012) Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors. Biochem Soc Trans 40:1167–1177. https://doi.org/10.1042/BST20120232

    Article  CAS  PubMed  Google Scholar 

  36. Lovley DR (2008) Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6:225–231. https://doi.org/10.1111/j.1472-4669.2008.00148.x

    Article  CAS  PubMed  Google Scholar 

  37. El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107:18127–18131. https://doi.org/10.1073/pnas.1004880107

    Article  PubMed  Google Scholar 

  38. Gorby YA, Yanina S, Mclean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103(30):11358–11363. https://doi.org/10.1073/pnas.0604517103

  39. Vargas M, Malvankar NS, Tremblay P, Leang C, Smith JA, Patel P, Synoeyenbos-West O, Nevin KP, Lovley DR (2013) Aromatic amino acids required for Pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4:1–6. https://doi.org/10.1128/mBio.00105-13

    Article  Google Scholar 

  40. Shi L, Deng S, Marshall MJ, Wang Z, Kennedy DW, Dohnalkova AC, Mottaz HM, Hill EA, Gorby YA, Beliaev AS, Richardson DJ, Zachara JM, Fredrickson JK (2008) Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190:5512–5516. https://doi.org/10.1128/JB.00514-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bouhenni RA, Vora GJ, Biffinger JC, Shirodkar S, Brockman K, Ray R, Wu P, Johnson BJ, Biddle EM, Marshall MJ, Fitzgerald LA, Little BJ, Fredrickson JK, Beliaev AS, Ringeisen BR, Saffarini DA (2010) The Role of Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer. Electroanalysis 22:856–864. https://doi.org/10.1002/elan.200880006

    Article  CAS  Google Scholar 

  42. Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci 111:12883–12888. https://doi.org/10.1073/pnas.1410551111

    Article  CAS  PubMed  Google Scholar 

  43. Holmes DE, Dang Y, Walker DJF, Lovley DR (2016) The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb Genomics 2:e000072. https://doi.org/10.1099/mgen.0.000072

    Article  Google Scholar 

  44. Wang F, Gu Y, O’Brien JP, Yi SM, Yalcin SE, Srikanth V, Shen C, Vu D, Ing NL, Hochbaum AI, Egelman EH, Malvankar NS (2019) Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177:361-369.e10. https://doi.org/10.1016/j.cell.2019.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Filman DJ, Marino SF, Ward JE, Yang L, Mester Z, Bullitt E, Lovley DR, Strauss M (2019) Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Commun Biol 2:219. https://doi.org/10.1038/s42003-019-0448-9

  46. Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxis. Nature 416:767–769. https://doi.org/10.1038/416767a

  47. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348. https://doi.org/10.1128/AEM.01444-06

  48. Reardon PN, Mueller KT (2013) Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens. J Biol Chem 288:29260–29266. https://doi.org/10.1074/jbc.M113.498527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu X, Ye Y, Xiao K, Rensing C, Zhou S (2019) Molecular evidence for the adaptive evolution of Geobacter sulfurreducens to perform dissimilatory iron reduction in natural environments. Mol Microbiol 00:1–12. https://doi.org/10.1111/mmi.14443

    Article  CAS  Google Scholar 

  50. Leang C, Qian X, Mester T, Lovley DR (2010) Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl Environ Microbiol 76:4080–4084. https://doi.org/10.1128/AEM.00023-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ru X, Zhang P, Beratan DN (2019) Assessing possible mechanisms of micrometer-scale electron transfer in heme-free Geobacter sulfurreducens Pili. J Phys Chem B 123:5035–5047. https://doi.org/10.1021/acs.jpcb.9b01086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. 405:13–16. https://doi.org/10.1038/35011098

  53. Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71:4414–4426. https://doi.org/10.1128/AEM.71.8.4414-4426.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Myers CR, Myers JM (1993a) Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol Lett 108:15–22. https://doi.org/10.1111/j.1574-6968.1993.tb06066.x

    Article  CAS  Google Scholar 

  55. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105:3968–3973. https://doi.org/10.1073/pnas.0710525105

    Article  CAS  PubMed  Google Scholar 

  56. Von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623. https://doi.org/10.1128/AEM.01387-07

    Article  CAS  Google Scholar 

  57. Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4:e00553-12. https://doi.org/10.1128/mBio.00553-12

  58. Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474. https://doi.org/10.1128/JB.00925-09

    Article  CAS  PubMed  Google Scholar 

  59. Okamoto A, Kalathil S, Deng X, Hashimoto K, Nakamura R, Nealson KH (2014) Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep 4:1–8. https://doi.org/10.1038/srep05628

    Article  CAS  Google Scholar 

  60. Ross DE, Brantley SL, Tien M (2009) Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 75:5218–5226. https://doi.org/10.1128/AEM.00544-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284:28865–28873. https://doi.org/10.1074/jbc.M109.043455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181–186. https://doi.org/10.1111/j.1574-6941.2001.tb00768.x

    Article  CAS  PubMed  Google Scholar 

  63. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152. https://doi.org/10.1016/S0141-0229(01)00478-1

    Article  CAS  Google Scholar 

  64. Koch C, Harnisch F (2016) Is there a specific ecological Niche for electroactive microorganisms? Chem Electro Chem 3:1282–1295. https://doi.org/10.1002/celc.201600079

    Article  CAS  Google Scholar 

  65. Dopson M, Ni G, Sleutels THJA (2016) Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 40:164–181. https://doi.org/10.1093/femsre/fuv044

    Article  CAS  PubMed  Google Scholar 

  66. Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514. https://doi.org/10.1111/j.1462-2920.2008.01675.x

    Article  CAS  PubMed  Google Scholar 

  67. Pande S, Kost C (2017) Bacterial unculurability and the formation of intercellular metabolic networks. Trends Microbiol 25(5):349–361. https://doi.org/10.1016/j.tim.2017.02.015

    Article  CAS  PubMed  Google Scholar 

  68. Saratale RG, Saratale GD, Pugazhendhi A, Zhen G, Kumar G, Kadier A, Sivagurunathan P (2017) Microbiome involved in microbial electrochemical systems (MESs): a review. Chemosphere 177:176–188. https://doi.org/10.1016/j.chemosphere.2017.02.143

    Article  CAS  PubMed  Google Scholar 

  69. Derby H, Hammer B (1931) Bacteriology of butter—bacteriological studies on surface taint butter. Res Bull 145:387

    CAS  Google Scholar 

  70. MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new Genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182. https://doi.org/10.1016/S0723-2020(85)80051-5

    Article  CAS  Google Scholar 

  71. Fang Y, Wang Y, Liu Z, Dai H, Cai H, Li Z, Du Z, Wang X, Jing H, Wei Q, Kan B, Wang D (2019) Multilocus sequence analysis, a rapid and accurate tool for taxonomic classification, evolutionary relationship determination, and population biology studies of the genus Shewanella. Appl Environ Microbiol 85:e03126-e3218. https://doi.org/10.1128/AEM.03126-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, Macgregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov . Int J Syst Bacteriol 705–724. https:// doi:https://doi.org/10.1099/00207713-49-2-705

  73. Koziñska A, Pȩkala A (2004) First isolation of Shewanella putrefaciens from freshwater fish—a potential new pathogen of fish. Bull Eur Assoc Fish Pathol 24:189–193

    Google Scholar 

  74. Paździor E (2016) Shewanella putrefaciens—a new opportunistic pathogen of freshwater fish. J Vet Res 60:429–434. https://doi.org/10.1515/jvetres-2016-0064

    Article  Google Scholar 

  75. Abboud R, Popa R, Souza-egipsy V, Giometti CS, Tollaksen SL, Mosher JJ, Findlay RH, Nealson KH (2005) Low-temperature growth of Shewanella oneidensis MR-1. Appl Environ Microbiol 71:811–816. https://doi.org/10.1128/AEM.71.2.811

  76. Holt HM, Gahrn-Hansen B, Bruun B (2005) Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clin Microbiol Infect 11(5):347–352. https://doi.org/10.1111/j.1469-0691.2005.01108.x

  77. Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258. https://doi.org/10.1146/annurev.micro.61.080706.093257

    Article  CAS  PubMed  Google Scholar 

  78. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123. https://doi.org/10.1038/nbt749

    Article  CAS  PubMed  Google Scholar 

  79. Thorell K, Meier-Kolthoff JP, Sjöling Å, Martín-Rodríguez AJ (2019) Whole-genome sequencing redefines Shewanella taxonomy. Front Microbiol 10:1861. https://doi.org/10.3389/fmicb.2019.01861

    Article  PubMed  PubMed Central  Google Scholar 

  80. Romine MF, Carlson TS, Norbeck AD, McCue LA, Lipton MS (2008) Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl Environ Microbiol 74:3257–3265. https://doi.org/10.1128/AEM.02720-07

  81. Meyer TE, Tsapin AI, Vandenberghe I, De Smet L, Frishman D, Nealson KH, Cusanovich MA, Van Beeumen JJ (2004) Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. Omi A J Integr Biol 8:57–77. https://doi.org/10.1089/153623104773547499

    Article  CAS  Google Scholar 

  82. Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim B-H, Fredrickson JK, Nealson KH (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73:7003–7012. https://doi.org/10.1128/AEM.01087-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT (2012) Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor. PLoS One 7:e30827. https://doi.org/10.1371/journal.pone.0030827

  84. Richardson D (2002) PMF through the redox loop. Science 295:1842–1843. https://doi.org/10.1126/science.1070366

    Article  CAS  PubMed  Google Scholar 

  85. Scott JH, Nealson KH (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. J Bacteriol 176:3408–3411. https://doi.org/10.1128/JB.176.11.3408-3411.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351. https://doi.org/10.1128/JB.00090-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Myers CR, Myers JM (1993b) Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 114:215–222. https://doi.org/10.1111/j.1574-6968.1993.tb06576.x

    Article  CAS  Google Scholar 

  88. Marritt SJ, McMillan DGG, Shi L, Fredrickson JK, Zachara JM, Richardson DJ, Jeuken LJC, Butt JN (2012) The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1. Biochem Soc Trans 40:1217–1221. https://doi.org/10.1042/bst20120150

    Article  CAS  PubMed  Google Scholar 

  89. Saffarini DA, Blumerman SL, Mansoorabadi KJ (2002) Role of Menaquinones in Fe (III) reduction by membrane fractions of Shewanella putrefaciens. J Bacteriol 184:846–848. https://doi.org/10.1128/JB.184.3.846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Myers CR, Myers JM (1997) Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome C required for reduction of Iron (III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179:1143–1152. https://doi.org/10.1128/jb.179.4.1143-1152.1997

  91. Myers JM, Myers CR (2000) Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J Bacteriol 182:67–75. https://doi.org/10.1128/jb.182.1.67-75.2000

  92. Schwalb C, Chapman SK, Reid GA (2002) The membrane-bound tetrahaem c -type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella. Biochem Soc Trans 30:658–662. https://doi.org/10.1042/bst0300658

  93. Zhong Y, Shi L (2018) Genomic analyses of the quinol oxidases and/or quinone reductases involved in bacterial extracellular electron transfer. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.03029

    Article  Google Scholar 

  94. Zargar K, Saltikov CW (2009) Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. Arch Microbiol 191:797–806. https://doi.org/10.1007/s00203-009-0511-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Field SJ, Dobbin PS, Cheesman MR, Watmough NJ, Thomson AJ, Richardson DJ (2000) Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCIMB400. J Biol Chem 275:8515–8522. https://doi.org/10.1074/jbc.275.12.8515

    Article  CAS  PubMed  Google Scholar 

  96. Firer-Sherwood MA, Bewley KD, Mock JY, Elliott SJ (2011) Tools for resolving complexity in the electron transfer networks of multiheme cytochromes c. Metallomics 3:344–348. https://doi.org/10.1039/c0mt00097c

    Article  CAS  PubMed  Google Scholar 

  97. Fonseca BM, Paquete CM, Neto SE, Pacheco I, Soares CM, Louro RO (2013) Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochem J 449:101–108

    Article  CAS  Google Scholar 

  98. Vellingiri A, Song YE, Munussami G, Kim C, Park C, Jeon B-H, Lee S-G, Kim JR (2019) Overexpression of c-type cytochrome, CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. J Chem Technol Biotechnol 94:2115–2122. https://doi.org/10.1002/jctb.5813

    Article  CAS  Google Scholar 

  99. Gescher J, Cordova CD, Spormann AM (2008) Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol Microbiol 68:706–719. https://doi.org/10.1111/j.1365-2958.2008.06183.x

    Article  CAS  PubMed  Google Scholar 

  100. Louro RO, Paquete CM (2012) The quest to achieve the detailed structural and functional characterization of CymA. Biochem Soc Trans 40:1291–1294. https://doi.org/10.1042/bst20120114

    Article  CAS  PubMed  Google Scholar 

  101. Firer-Sherwood M, Su Pulcu G, J. Elliott S, (2008) Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J Biol Inorg Chem 13:849–854. https://doi.org/10.1007/s00775-008-0398-z

    Article  CAS  PubMed  Google Scholar 

  102. Cordova CD, Schicklberger MFR, Yu Y, Spormann AM (2011) Partial functional replacement of CymA by SirCD in Shewanella oneidensis MR-1. J Bacteriol 193:2312–2321. https://doi.org/10.1128/JB.01355-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Breuer M, Rosso KM, Blumberger J, Butt JN (2015) Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface 12. https://doi.org/10.1098/rsif.2014.1117

    Google Scholar 

  104. Lemaire ON, Honoré FA, Jourlin-Castelli C, Méjean V, Fons M, Iobbi-Nivol C (2016) Efficient respiration on TMAO requires TorD and TorE auxiliary proteins in Shewanella oneidensis. Res Microbiol 167:630–637. https://doi.org/10.1016/j.resmic.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  105. Dohnalkova AC, Marshall MJ, Arey BW, Williams KH, Buck EC, Fredrickson JK (2011) Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy. Appl Environ Microbiol 77:1254–1262. https://doi.org/10.1128/AEM.02001-10

  106. Sturm G, Richter K, Doetsch A, Heide H, Louro RO, Gescher J (2015) A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J 9:1802–1811. https://doi.org/10.1038/ismej.2014.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsapin AI, Vandenberghe I, Nealson KH, Scott JH, Meyer TE, Cusanovich MA, Harada E, Kaizu T, Akutsu H, Leys D, Van BJJ (2001) Identification of a small tetraheme cytochrome c and a flavocytochrome c as two of the principal soluble cytochromes c in Shewanella oneidensis strain MR1. Appl Environ Microbiol 67:3236–3244. https://doi.org/10.1128/AEM.67.7.3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schuetz B, Schicklberger M, Kuermann J, Spormann AM, Gescher J, Kuermann J, Spormann AM, Gescher J (2009) Periplasmic electron transfer via the c-type cytochromes Mtra and Fcca of Shewanella oneidensis Mr-1. Appl Environ Microbiol 75:7789–7796. https://doi.org/10.1128/AEM.01834-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gordon EHJ, Pike AD, Hill AE, Cuthbertson PM, Chapman SK, Reid GA (2000) Identification and characterization of a novel cytochrome c3 from Shewanella frigidimarina that is involved in Fe(III) respiration. Biochem J 349:153–158. https://doi.org/10.1042/0264-6021:3490153

  110. Pealing SL, Black AC, Manson FDC, Ward FB, Chapman SK, Reid GA (1992) Sequence of the gene encoding flavocytochrome. Biochemistry 31:12132–12140. https://doi.org/10.1021/bi00163a023

    Article  CAS  PubMed  Google Scholar 

  111. Taylor P, Pealing SL, Reid GA, Chapman SK, Walkinshaw MD (1999) Structural and mechanistic mapping of a unique fumarate reductase. Nat Struct Biol 6:1108–1112. https://doi.org/10.1038/70045

    Article  CAS  PubMed  Google Scholar 

  112. Leys D, Tsapin AS, Nealson KH, Meyer TE, Cusanovich MA, Van BJJ, Van Beeumen JJ (1999) Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat Struct Biol 6:1113–1117. https://doi.org/10.1038/70051

    Article  CAS  PubMed  Google Scholar 

  113. Pessanha M, Rothery EL, Miles CS, Reid GA, Chapman SK, Louro RO, Turner DL, Salgueiro CA, Xavier AV (2009) Tuning of functional heme reduction potentials in Shewanella fumarate reductases. Biochim Biophys Acta 1787:113–120. https://doi.org/10.1016/j.bbabio.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  114. Paquete CM, Saraiva IH, Louro RO (2014) Redox tuning of the catalytic activity of soluble fumarate reductases from Shewanella. Biochim Biophys Acta - Bioenerg 1837:717–725. https://doi.org/10.1016/j.bbabio.2014.02.006

    Article  CAS  Google Scholar 

  115. Alves MN, Fernandes AP, Salgueiro CA, Paquete CM (2016) Biochimica et Biophysica Acta Unraveling the electron transfer processes of a nanowire protein from Geobacter sulfurreducens. BBA - Bioenerg 1857:7–13. https://doi.org/10.1016/j.bbabio.2015.09.010

  116. Tsapin AI, Nealson KH, Meyers T, Cusanovich MA, Van Beuumen J, Crosby LD, Feinberg BA, Zhang C (1996) Purification and properties of a low-redox-potential tetraheme cytochrome c3 from Shewanella putrefaciens. J Bacteriol 178:6386–6388. https://doi.org/10.1128/JB.178.21.6386-6388.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Coursolle D, Gralnick JA (2010) Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol Microbiol 1–14. https://doi.org/10.1111/ j.1365-2958.2010.07266.x

    Google Scholar 

  118. Coursolle D, Gralnick JA (2012) Reconstruction of extracellular respiratory pathways for iron(III) reduction in Shewanella oneidensis strain MR-1. Front Microbiol 3:1–11. https://doi.org/10.3389/fmicb.2012.00056

    Article  Google Scholar 

  119. Delgado VP, Paquete CM, Sturm G, Gescher J (2019) Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition. Bioelectrochemistry 129:18–25. https://doi.org/10.1016/j.bioelechem.2019.04.022

    Article  CAS  PubMed  Google Scholar 

  120. Leys D, Meyer TE, Tsapin AS, Nealson KH, Cusanovich MA, Van Beeumen JJ (2002) Crystal structures at atomic resolution reveal the novel concept of “electron-harvesting” as a role for the small tetraheme cytochrome c. J Biol Chem 277:35703–35711. https://doi.org/10.1074/jbc.M203866200

    Article  CAS  PubMed  Google Scholar 

  121. Fonseca BM, Silva L, Trindade IB, Moe E, Matias PM, Louro RO, Paquete CM (2019) Optimizing electroactive organisms: the effect of orthologous proteins. Front Energy Res 7:1–13. https://doi.org/10.3389/fenrg.2019.00002

    Article  CAS  Google Scholar 

  122. Paixão VB, Salgueiro CA, Brennan L, Reid GA, Chapman SK, Turner DL (2008) The solution structure of a tetraheme cytochrome from Shewanella frigidimarina reveals a novel family structural motif. Biochemistry 47:11973–11980. https://doi.org/10.1021/bi801326j

    Article  CAS  PubMed  Google Scholar 

  123. Smith DMA, Rosso KM, Dupuis M, Valiev M, Straatsma TP (2006) Electronic coupling between heme electron-transfer centers and its decay with distance depends strongly on relative orientation. J Phys Chem B 110:15582–15588. https://doi.org/10.1021/jp057068r

    Article  CAS  PubMed  Google Scholar 

  124. Pessanha M, Louro RO, Correia IJIJ, Rothery EL, Pankhurst KLKL, Reid GA, Chapman SK, Turner DL, Salgueiro CA (2003) Thermodynamic characterization of a tetrahaem cytochrome isolated from a facultative aerobic bacterium, Shewanella frigidimarina : a putative redox model for flavocytochrome c3. Biochem J 495:489–495. https://doi.org/10.1042/BJ20021408

    Article  Google Scholar 

  125. Fonseca BM, Saraiva IH, Paquete CM, Soares CM, Pacheco I, Salgueiro CA, Louro RO (2009) The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes. J Biol Inorg Chem 14:375–385. https://doi.org/10.1007/s00775-008-0455-7

    Article  CAS  PubMed  Google Scholar 

  126. Dolla A, Blanchard L, Guerlesquin F, Bruschi M (1994) The protein moiety modulates the redox potential in cytochromes c. Biochimie 76:471–479. https://doi.org/10.1016/0300-9084(94)90171-6

    Article  CAS  PubMed  Google Scholar 

  127. Martel PJ, Soares CM, Baptista AM, Fuxreiter M, Náray-Szabó G, Louro RO, Carrondo MA (1999) Comparative redox and pK a calculations on cytochrome c3 from several Desulfovibrio species using continuum electrostatic methods. JBIC J Biol Inorg Chem 4:73–86. https://doi.org/10.1007/s007750050291

    Article  CAS  PubMed  Google Scholar 

  128. Beliaev AS, Saffarini DA (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe (III) and Mn (IV) reduction. J Bacteriol 180:6292–6297

    Article  CAS  Google Scholar 

  129. Beliaev AS, Saffarini DA, Mclaughlin JL, Hunnicutt D (2001) MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722–730. https://doi.org/10.1046/j.1365-2958.2001.02257.x

    Article  CAS  PubMed  Google Scholar 

  130. Bücking C, Popp F, Kerzenmacher S, Gescher J (2010) Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 306:144–151. https://doi.org/10.1111/j.1574-6968.2010.01949.x

    Article  CAS  PubMed  Google Scholar 

  131. Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L, Edwards MJ, White G, Baiden N, Gates AJ, Marritt SJ, Clarke TA (2012) The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol Microbiol 85:201–212. https://doi.org/10.1111/j.1365-2958.2012.08088.x

    Article  CAS  PubMed  Google Scholar 

  132. Edwards M, White G, Butt J, Richardson DJ, Clarke TA (2019) The structure of a biological insulated transmembrane molecular wire. SSRN Electron J. https://doi.org/10.2139/ssrn.3445677

    Article  Google Scholar 

  133. Firer-Sherwood MA, Ando N, Drennan CL, Elliott SJ (2011) Solution-based structural analysis of the decaheme cytochrome, MtrA, by small-angle X-ray scattering and analytical ultracentrifugation. J Phys Chem B 115:11208–11214. https://doi.org/10.1021/jp203603r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Myers CR, Myers JM (2002) MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl Environ Microbiol 68:5585–5594. https://doi.org/10.1128/AEM.68.11.5585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, Mills PC, Fredrickson JK, Zachara JM, Shi L, Beliaev AS, Marshall MJ, Tien M, Brantley S, Butt JN, Richardson DJ (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci 106:22169–74. https://doi.org/10.1073/pnas.0900086106

    Google Scholar 

  136. Schicklberger M, Bücking C, Schuetz B, Heide H, Gescher J (2011) Involvement of the Shewanella oneidensis decaheme cytochrome MtrA in the periplasmic stability of the β-barrel protein MtrB. Appl Environ Microbiol 77:1520–1523. https://doi.org/10.1128/AEM.01201-10

    Article  CAS  PubMed  Google Scholar 

  137. Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci 103:4669–4674. https://doi.org/10.1073/pnas.0505959103

    Article  CAS  PubMed  Google Scholar 

  138. Schicklberger M, Sturm G, Gescher J (2013) Genomic plasticity enables a secondary electron transport pathway in Shewanella oneidensis. Appl Environ Microbiol 79:1150–1159. https://doi.org/10.1128/AEM.03556-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Richardson DJ, Fredrickson JK, Zachara JM (2012) Electron transport at the microbe-mineral interface: a synthesis of current research challenges. Biochem Soc Trans 40:1163–1166. https://doi.org/10.1042/BST20120242

    Article  CAS  PubMed  Google Scholar 

  140. Liu J, Wang Z, Belchik SM, Edwards MJ, Liu C, Kennedy DW, Merkley ED, Lipton MS, Butt JN, Richardson DJ, Zachara JM, Fredrickson JK, Rosso KM, Shi L (2012) Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(ll)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbiol 3:1–11. https://doi.org/10.3389/fmicb.2012.00037

    Article  Google Scholar 

  141. Jiao Y, Newman DK (2007) The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol 189:1765–1773. https://doi.org/10.1128/JB.00776-06

    Article  CAS  PubMed  Google Scholar 

  142. Gupta D, Sutherland MC, Rengasamy K, Meacham JM, Kranz RG, Bose A (2019) Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. MBio 10. https://doi.org/10.1128/mBio.02668-19

    Google Scholar 

  143. Edwards MJ, White GF, Lockwood CW, Lawes MC, Martel A, Harris G, Scott DJ, Richardson DJ, Butt JN, Clarke TA (2018) Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners. J Biol Chem 293:8103–8112. https://doi.org/10.1074/jbc.RA118.001850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ross DE, Ruebush SS, Brantley SL, Hartshorne RS, Clarke TA, Richardson DJ, Tien M (2007) Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Appl Environ Microbiol 73:5797–5808. https://doi.org/10.1128/AEM.00146-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pitts KE, Dobbin PS, Reyes-Ramirez F, Thomson AJ, Richardson DJ, Seward HE (2003) Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble FE(III) chelates. J Biol Chem 278:27758–27765. https://doi.org/10.1074/jbc.M302582200

    Article  CAS  PubMed  Google Scholar 

  146. Clarke TA, Cole JA, Richardson DJ, Hemmings AM (2007) The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solution-state interaction with the pentahaem nitrite reductase NrfA. Biochem J 406:19–30. https://doi.org/10.1042/BJ20070321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ (2003) Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 185:6112–6118. https://doi.org/10.1128/JB.185.20.6112-6118.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Myers CR, Myers JM (2003) Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett Appl Microbiol 37:254–258. https://doi.org/10.1046/j.1472-765X.2003.01389.x

    Article  CAS  PubMed  Google Scholar 

  149. Myers JM, Myers CR (2001) Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl Environ Microbiol 67:260–269. https://doi.org/10.1128/AEM.67.1.260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang H, Tang X, Munske GR, Tolic N, Anderson GA, Bruce JE (2009) Identification of protein-protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol Cell Proteomics 8:409–420. https://doi.org/10.1074/mcp.M800232-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC (2006) Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188:4705–4714. https://doi.org/10.1128/JB.01966-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Borloo J, Vergauwen B, De Smet L, Brigé A, Motte B, Devreese B, Van Beeumen J, De SL, Brige A, Motte B, Devreese B, Van BJJ (2007) A kinetic approach to the dependence of dissimilatory metal reduction by Shewanella oneidensis MR-1 on the outer membrane cytochromes c OmcA and OmcB. FEBS J 274:3728–3738. https://doi.org/10.1111/j.1742-4658.2007.05907.x

    Article  CAS  PubMed  Google Scholar 

  153. Xiong Y, Shi L, Chen B, Mayer MU, Lower BH, Londer YY, Bose S, Hochella MF, Fredrickson JK, Squier TC (2006) High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J Am Chem Soc 128:13978–13979. https://doi.org/10.1021/ja063526d

  154. Meitl LA, Eggleston CM, Colberg PJS, Khare N, Reardon CL, Shi L (2009) Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim Cosmochim Acta 73:5292–5307. https://doi.org/10.1016/j.gca.2009.06.021

    Article  CAS  Google Scholar 

  155. Eggleston CM, Vo J, Droubay TC, Colberg PJS (2008) Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium, with oxide electrodes: a candidate biofuel cell system. Inorganica Chim Acta 361:769–777. https://doi.org/10.1016/j.ica.2007.07.015

    Article  CAS  Google Scholar 

  156. Lower BH, Lins RD, Oestreicher Z, Straatsma TP, Hochella MF, Shi L, Lower SK (2008) In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype. Environ Sci Technol 42:3821–3827. https://doi.org/10.1021/es702688c

    Article  CAS  PubMed  Google Scholar 

  157. Hartshorne RS, Jepson BN, Clarke TA, Field SJ, Fredrickson J, Zachara J, Shi L, Butt JN, Richardson DJ (2007) Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. JBIC J Biol Inorg Chem 12:1083–1094. https://doi.org/10.1007/s00775-007-0278-y

    Article  CAS  PubMed  Google Scholar 

  158. Lower BH, Yongsunthon R, Shi L, Wildling L, Gruber HJ, Wigginton NS, Reardon CL, Pinchuk GE, Droubay TC, Boily J-F, Lower SK (2009) Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1. Appl Environ Microbiol 75:2931–2935. https://doi.org/10.1128/AEM.02108-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Edwards MJ, White GF, Norman M, Tome-Fernandez A, Ainsworth E, Shi L, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ, Clarke TA (2015) Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer. Sci Rep 5:11677. https://doi.org/10.1038/srep11677

    Article  PubMed  PubMed Central  Google Scholar 

  160. Edwards MJ, Baiden NA, Johs A, Tomanicek SJ, Liang L, Shi L, Fredrickson JK, Zachara JM, Gates AJ, Butt JN, Richardson DJ, Clarke TA (2014) The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe-mineral interface. FEBS Lett 588:1886–1890. https://doi.org/10.1016/j.febslet.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  161. Paquete CM, Fonseca BM, Cruz DR, Pereira TM, Pacheco I, Soares CM, Louro RO (2014) Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Front Microbiol 5:318. https://doi.org/10.3389/fmicb.2014.00318

    Article  PubMed  PubMed Central  Google Scholar 

  162. Neto SE, de Melo-Diogo D, Correia IJ, Paquete CM, Louro RO (2017) Characterization of OmcA Mutants from Shewanella oneidensis MR-1 to investigate the molecular mechanisms underpinning electron transfer across the microbe-electrode interface. Fuel Cells 17:1–11. https://doi.org/10.1002/fuce.201700023

    Article  CAS  Google Scholar 

  163. Min D, Cheng L, Zhang F, Huang X-N, Li D, Liu D, Lau T-C, Mu Y, Yu H (2017) Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environ Sci Technol 51:5082–5089. https://doi.org/10.1021/acs.est.6b04640

    Article  CAS  PubMed  Google Scholar 

  164. Choi D, Lee SB, Kim S, Min B, Choi IG, Chang IS, Bom S, Kim S, Min B, Choi IG, Seop I (2014) Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions. Bioresour Technol 154:59–66. https://doi.org/10.1016/j.biortech.2013.12.025

    Article  CAS  PubMed  Google Scholar 

  165. Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1. https://doi.org/10.1128/mBio.00190-10

    Google Scholar 

  166. Li F, Li Y, Sun L, Li X, Yin C, An X, Chen X, Tian Y, Song H (2017) Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnol Biofuels 10:196. https://doi.org/10.1186/s13068-017-0881-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA (2010) Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol 76:4123–4129. https://doi.org/10.1128/AEM.02425-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Teravest M (2019). Reversing an extracellular electron transfer pathway for electrode-driven acetoin reduction. https://doi.org/10.1021/acssynbio.8b00498

    Article  Google Scholar 

  169. Li F, Li Y, Cao Y, Wang L, Liu C, Shi L, Song H (2018) Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat Commun 9:3637. https://doi.org/10.1038/s41467-018-05995-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yang Y, Xiang Y, Sun G, Wu WM, Xu M (2015) Electron acceptor-dependent respiratory and physiological stratifications in biofilms. Environ Sci Technol 49:196–202. https://doi.org/10.1021/es504546g

    Article  CAS  PubMed  Google Scholar 

  171. Liu T, Yu Y, Deng X, Ng CK, Cao B, Wang J, Rice SA, Kjelleberg S, Song H (2015) Enhanced Shewanella biofilm promotes bioelectricity generation. 9999:1–9. https://doi.org/10.1002/bit.25624

    Google Scholar 

  172. Corts AD, Thomason LC, Gill RT, Gralnick JA (2019) Efficient and precise genome editing in Shewanella with recombineering and CRISPR/Cas9-mediated counter-selection. ACS Synth Biol 8:1877–1889. https://doi.org/10.1021/acssynbio.9b00188

    Article  CAS  PubMed  Google Scholar 

  173. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. 23. https://doi.org/10.1016/j.tibtech.2005.04.008

  174. Xu S, Jangir Y, El-Naggar MY (2016) Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochim Acta 198:49–55. https://doi.org/10.1016/j.electacta.2016.03.074

    Article  CAS  Google Scholar 

  175. Christwardana M, Kwon Y (2017) Yeast and carbon nanotube based biocatalyst developed by synergetic effects of covalent bonding and hydrophobic interaction for performance enhancement of membraneless microbial fuel cell. Bioresour Technol 225:175–182. https://doi.org/10.1016/j.biortech.2016.11.051

    Article  CAS  PubMed  Google Scholar 

  176. Costa NL, Hermann B, Fourmond V, Faustino MM, Teixeira M, Einsle O, Paquete CM, Louro RO (2019) How thermophilic gram-positive organisms perform extracellular electron transfer: characterization of the cell surface terminal reductase OcwA. MBio 10:e01210. https://doi.org/10.1128/mBio.01210-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lebègue E, Costa NL, Fonseca BM, Louro RO, Barrière F (2019) Electrochemical properties of pH-dependent flavocytochrome c3 from Shewanella putrefaciens adsorbed onto unmodified and catechol-modified edge plane pyrolytic graphite electrode. J Electroanal Chem 847. https://doi.org/10.1016/j.jelechem.2019.113232

    Google Scholar 

  178. Schievano A, Berenguer R, Goglio A, Bocchi S, Marzorati S, Rago L, Louro RO, Paquete CM, Esteve-Núñez A (2019) Electroactive biochar for large-scale environmental applications of microbial electrochemistry. ACS Sustain Chem Eng 7:18198–18212. https://doi.org/10.1021/acssuschemeng.9b04229

    Article  CAS  Google Scholar 

  179. Beblawy S, Bursac T, Paquete C, Louro R, Clarke TA, Gescher J (2018) Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol Microbiol 109:571–583. https://doi.org/10.1111/mmi.14067

    Article  CAS  PubMed  Google Scholar 

  180. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77:7633–7639. https://doi.org/10.1128/AEM.05365-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M, Coates JD (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci 109:1702–1707. https://doi.org/10.1073/pnas.1112905109

    Article  PubMed  Google Scholar 

  183. Edwards MJ, Clarke TA, Richardson DJ, Paquete CM (2019) Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Sci 1–13. https://doi.org/10.1002/pro.3787

    Google Scholar 

  184. Alves AS, Costa NL, Tien M, Louro RO, Paquete CM (2017) Modulation of the reactivity of multiheme cytochromes by site-directed mutagenesis: moving towards the optimization of microbial electrochemical technologies. J Biol Inorg Chem 22:87–97. https://doi.org/10.1007/s00775-016-1409-0

    Article  CAS  PubMed  Google Scholar 

  185. Voigt P, Knapp E-W (2003) Tuning heme redox potentials in the cytochrome c subunit of photosynthetic reaction centers. J Biol Chem 278:51993–52001. https://doi.org/10.1074/jbc.M307560200

    Article  CAS  PubMed  Google Scholar 

  186. Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T (2018) Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 36:1316–1327. https://doi.org/10.1016/j.biotechadv.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  187. Agapakis CM, Silver PA (2010) Modular electron transfer circuits for synthetic biology. Bioeng Bugs 1:413–418. https://doi.org/10.4161/bbug.1.6.12462

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344. https://doi.org/10.1016/j.biortech.2011.07.019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo O. Louro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fonseca, B.M., Soares, R.M., Paquete, C.M., Louro, R.O. (2021). Bacterial Power: An Alternative Energy Source. In: Moura, J.J.G., Moura, I., Maia, L.B. (eds) Enzymes for Solving Humankind's Problems. Springer, Cham. https://doi.org/10.1007/978-3-030-58315-6_8

Download citation

Publish with us

Policies and ethics