Skip to main content

Electrospun Nanofibers for Cancer Therapy

  • Chapter
  • First Online:
Bio-Nanomedicine for Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1295))

Abstract

Lately, a remarkable progress has been recorded in the field of electrospinning for the preparation of numerous types of nanofiber scaffolds. These scaffolds present some remarkable features including high loading capacity and encapsulation efficiency, superficial area and porosity, potential for modification, structure for the co-delivery of various therapies, and cost-effectiveness. Their present and future applications for cancer diagnosis and treatment are promising and pioneering. In this chapter we provide a comprehensive overview of electrospun nanofibers (ESNFs) applications in cancer diagnosis and treatment, covering diverse types of drug-loaded electrospun nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin, S. Y., Zhang, A. Q., Cheng, S. X., Rong, L., & Zhang, X. Z. (2017). Drug self-delivery systems for cancer therapy. Biomaterials, 112, 234–247.

    Article  CAS  PubMed  Google Scholar 

  2. Singh, M., Kundu, S., Reddy, M. A., Sreekanth, V., Motiani, R. K., Sengupta, S., Srivastava, A., & Bajaj, A. (2014). Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin. Nanoscale, 6(21), 12849–12855.

    Article  CAS  PubMed  Google Scholar 

  3. Cho, K., Wang, X., Nie, S., Chen, Z. G., & Shin, D. M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 14(5), 1310–1316.

    Article  CAS  PubMed  Google Scholar 

  4. Li, Y., Zhou, Y., Gu, T., Wang, G., Ren, Z., Weng, W., Li, X., Han, G., & Mao, C. (2016). A multifunctional Nanocrystalline CaF2:Tm,Yb@mSiO2 system for dual-triggered and optically monitored doxorubicin delivery. Particle and Particle Systems Characterization, 33(12), 896–905.

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y., Zhou, Y., Li, X., Sun, J., Ren, Z., Wen, W., Yang, X., & Han, G. (2016). A facile approach to Upconversion crystalline CaF2:Yb(3+),Tm(3+)@mSiO2 nanospheres for tumor therapy. RSC Advances, 6(44), 38365–38370.

    Article  CAS  PubMed  Google Scholar 

  6. Li, Z., Hu, Y., Howard, K. A., Jiang, T., Fan, X., Miao, Z., Sun, Y., Besenbacher, F., & Yu, M. (2016). Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS Nano, 10(1), 984–997.

    Article  CAS  PubMed  Google Scholar 

  7. Li, W., Peng, J., Tan, L., Wu, J., Shi, K., Qu, Y., Wei, X., & Qian, Z. (2016). Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles. Biomaterials, 106, 119–133.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Q., Polyakov, N., Chistyachenko, Y., Khvostov, M., Frolova, T., Tolstikova, T., Alexandr, D., & Su, W. (2018). Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Delivery, 25, 198–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Xiang, J., Wu, B., Zhou, Z., Hu, S., Piao, Y., Zhou, Q., Wang, G., Tang, J., Liu, X., & Shen, Y. (2018). Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Science China Life Sciences, 61, 436.

    Article  CAS  PubMed  Google Scholar 

  10. Feng, L., Gao, M., Tao, D., Chen, Q., Wang, H., Dong, Z., Chen, M., & Liu, Z. (2016). Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy. Advanced Functional Materials, 26, 2207–2217.

    Article  CAS  Google Scholar 

  11. Ngweniform, P., Abbineni, G., Cao, B., & Mao, C. (2009). Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: A novel nanocarrier for targeted drug delivery. Small, 5(17), 1963–1969.

    Article  CAS  PubMed  Google Scholar 

  12. Fang, J., Nakamura, H., & Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63(3), 136–151.

    Article  CAS  PubMed  Google Scholar 

  13. Huynh, E., & Zheng, G. (2015). Cancer nanomedicine: Addressing the dark side of the enhanced permeability and retention effect. Nanomedicine, 10(13), 1993–1995.

    Article  CAS  PubMed  Google Scholar 

  14. Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews. Clinical Oncology, 7(11), 653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soussan, E., Cassel, S., Blanzat, M., & Rico-Lattes, I. (2009). Drug delivery by soft matter: Matrix and vesicular carriers. Angewandte Chemie (International Ed. in English), 48(2), 274–288.

    Article  CAS  Google Scholar 

  16. Fu, Y., Chen, X., Mou, X., Ren, Z., Li, X., & Han, G. (2016). A dual-color luminescent localized drug delivery system with ratiometric-monitored doxorubicin release functionalities. ACS Biomaterials Science & Engineering, 2(4), 652–661.

    Article  CAS  Google Scholar 

  17. Huang, S., Duan, S., Wang, J., Bao, S., Qiu, X., Li, C., Liu, Y., Yan, L., Zhang, Z., & Hu, Y. (2016). Folic-acid-mediated functionalized gold nanocages for targeted delivery of anti-miR-181b in combination of gene therapy and photothermal therapy against hepatocellular carcinoma. Advanced Functional Materials, 26(15), 2532–2544.

    Article  CAS  Google Scholar 

  18. Folkman, J., & Long, D. (1964). The use of silicone rubber as a carrier for prolonged drug therapy. Journal of Surgical Research, 4(3), 139–142.

    Article  CAS  Google Scholar 

  19. De Souza, R., Zahedi, P., Allen, C. J., & Piquette-Miller, M. (2010). Polymeric drug delivery systems for localized cancer chemotherapy. Drug Delivery, 17(6), 365–375.

    Article  PubMed  CAS  Google Scholar 

  20. Ho, E. A., Soo, P. L., Allen, C., & Piquette-Miller, M. (2007). Impact of intraperitoneal, sustained delivery of paclitaxel on the expression of P-glycoprotein in ovarian tumors. Journal of Controlled Release, 117(1), 20–27.

    Article  CAS  PubMed  Google Scholar 

  21. Wolinsky, J. B., Colson, Y. L., & Grinstaff, M. W. (2012). Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. Journal of Controlled Release, 159(1), 14–26.

    Article  CAS  PubMed  Google Scholar 

  22. Xue, J., Xie, J., Liu, W., & Xia, Y. (2017). Electrospun nanofibers: New concepts, materials, and applications. Accounts of Chemical Research, 50(8), 1976–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nair, L. S., Bhattacharyya, S., & Laurencin, C. T. (2004). Development of novel tissue engineering scaffolds via electrospinning. Expert Opinion on Biological Therapy, 4(5), 659–668.

    Article  CAS  PubMed  Google Scholar 

  24. Goyal, R., Macri, L. K., Kaplan, H. M., & Kohn, J. (2016). Nanoparticles and nanofibers for topical drug delivery. Journal of Controlled Release, 240, 77–92.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, S., Lv, L. P., Landfester, K., & Crespy, D. (2016). Nanocontainers in and onto nanofibers. Accounts of Chemical Research, 49(5), 816–823.

    Article  CAS  PubMed  Google Scholar 

  26. Aussawasathien, D., Teerawattananon, C., & Vongachariya, A. (2008). Separation of micron to sub-micron particles from water: Electrospun nylon-6 nanofibrous membranes as pre-filters. Journal of Membrane Science, 315(1–2), 11–19.

    Article  CAS  Google Scholar 

  27. Gopal, R., Kaur, S., Feng, C. Y., Chan, C., Ramakrishna, S., Tabe, S., & Matsuura, T. (2007). Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal. Journal of Membrane Science, 289(1–2), 210–219.

    Article  CAS  Google Scholar 

  28. Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., & Matsuura, T. (2006). Electrospun nanofibrous filtration membrane. Journal of Membrane Science, 281(1–2), 581–586.

    Article  CAS  Google Scholar 

  29. Gorji, M., Jeddi, A. A. A., & Gharehaghaji, A. A. (2012). Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. Journal of Applied Polymer Science, 125(5), 4135–4141.

    Article  CAS  Google Scholar 

  30. Lee, S., & Kay Obendorf, S. (2006). Developing protective textile materials as barriers to liquid penetration using melt-electrospinning. Journal of Applied Polymer Science, 102(4), 3430–3437.

    Article  CAS  Google Scholar 

  31. Kowalczyk, T., Nowicka, A., Elbaum, D., & Kowalewski, T. A. (2008). Electrospinning of bovine serum albumin. Optimization and the use for production of biosensors. Biomacromolecules, 9(7), 2087–2090.

    Article  CAS  PubMed  Google Scholar 

  32. Rojas, R., & Pinto, N. J. (2008). Using electrospinning for the fabrication of rapid response gas sensors based on conducting polymer nanowires. IEEE Sensors Journal, 8(6), 951–953.

    Article  CAS  Google Scholar 

  33. Dong, Z., Kennedy, S. J., & Wu, Y. (2011). Electrospinning materials for energy-related applications and devices. Journal of Power Sources, 196(11), 4886–4904.

    Article  CAS  Google Scholar 

  34. Khil, M., Chan, D., Kim, H., Kim, I., & Bhattarai, N. (2003). Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research, 67B(2), 675–679.

    Article  CAS  Google Scholar 

  35. Luo, C. J., Stoyanov, S. D., Stride, E., Pelan, E., & Edirisinghe, M. (2012). Electrospinning versus fibre production methods: From specifics to technological convergence. Chemical Society Reviews, 41(13), 4708–4735.

    Article  CAS  PubMed  Google Scholar 

  36. Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromolecular Materials and Engineering, 298(5), 504–520.

    Article  CAS  Google Scholar 

  37. Zahedi, P., Rezaeian, I., Ranaei-Siadat, S.-O., Jafari, S.-H., & Supaphol, P. (2009., , n/a–n/a). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies.

    Google Scholar 

  38. Zhou, F.-L., Gong, R.-H., & Porat, I. (2009). Mass production of nanofibre assemblies by electrostatic spinning. Polymer International, 58(4), 331–342.

    Article  CAS  Google Scholar 

  39. Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., du Toit, L. C., & Ndesendo, V. M. K. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013, 1–22.

    Article  CAS  Google Scholar 

  40. Rieger, K. A., Birch, N. P., & Schiffman, J. D. (2013). Designing electrospun nanofiber mats to promote wound healing – A review. Journal of Materials Chemistry B, 1(36), 4531.

    Article  CAS  PubMed  Google Scholar 

  41. Sill, T. J., & von Recum, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989–2006.

    Article  CAS  PubMed  Google Scholar 

  42. Yoo, H. S., Kim, T. G., & Park, T. G. (2009). Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 61(12), 1033–1042.

    Article  CAS  PubMed  Google Scholar 

  43. Kenawy, E. R., Bowlin, G. L., Mansfield, K., Layman, J., Simpson, D. G., Sanders, E. H., & Wnek, G. E. (2002). Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinyl acetate), poly(lactic acid), and a blend. Journal of Controlled Release, 81, 57–64.

    Article  CAS  Google Scholar 

  44. Bala Balakrishnan, P., Gardella, L., Forouharshad, M., Pellegrino, T., & Monticelli, O. (2018). Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. Colloids and Surfaces B: Biointerfaces, 161, 488–496.

    Article  PubMed  CAS  Google Scholar 

  45. Gabriel, D., Cohen-Karni, T., Huang, D., Chiang, H. H., & Kohane, D. S. (2014). Photoactive electrospun fibers for inducing cell death. Advanced Healthcare Materials, 3(4), 494–499.

    Article  CAS  PubMed  Google Scholar 

  46. Mohammadian, F., & Eatemadi, A. (2017). Drug loading and delivery using nanofibers scaffolds. Artificial Cells, Nanomedicine, and Biotechnology, 45(5), 881–888.

    Article  CAS  PubMed  Google Scholar 

  47. Zeng, J., Xu, X., Chen, X., Liang, Q., Bian, X., Yang, L., & Jing, X. (2003). Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release, 92(3), 227–231.

    Article  CAS  PubMed  Google Scholar 

  48. Zeng, J., Yang, L., Liang, Q., Zhang, X., Guan, H., Xu, X., Chen, X., & Jing, X. (2005). Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of Controlled Release, 105(1–2), 43–51.

    Article  CAS  PubMed  Google Scholar 

  49. Xu, X., Yang, L., Xu, X., Wang, X., Chen, X., Liang, Q., Zeng, J., & Jing, X. (2005). Ultrafine medicated fibers electrospun from W/O emulsions. Journal of Controlled Release, 108(1), 33–42.

    Article  CAS  PubMed  Google Scholar 

  50. Loo, T. L., Dion, R. L., Dixon, R. L., & Rall, D. P. (1966). The antitumor agent, 1,3-bis(2-chloroethyl)-1-nitrosourea. Journal of Pharmaceutical Sciences, 55(5), 492–497.

    Article  CAS  Google Scholar 

  51. Xu, X., Chen, X., Xu, X., Lu, T., Wang, X., Yang, L., & Jing, X. (2006). BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. Journal of Controlled Release, 114(3), 307–316.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, D., Liu, S., Jing, X., Li, X., Li, W., & Huang, Y. (2012). Necrosis of cervical carcinoma by dichloroacetate released from electrospun polylactide mats. Biomaterials, 33(17), 4362–4369.

    Article  CAS  PubMed  Google Scholar 

  53. Ma, G., Liu, Y., Peng, C., Fang, D., He, B., & Nie, J. (2011). Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydrate Polymers, 86(2), 505–512.

    Article  CAS  Google Scholar 

  54. Shao, S., Li, L., Yang, G., Li, J., Luo, C., Gong, T., & Zhou, S. (2011). Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. International Journal of Pharmaceutics, 421(2), 310–320.

    Article  CAS  PubMed  Google Scholar 

  55. Chen, F. M., Zhang, M., & Wu, Z. F. (2010). Toward delivery of multiple growth factors in tissue engineering. Biomaterials, 31(24), 6279–6308.

    Article  CAS  PubMed  Google Scholar 

  56. Xie, C., Li, X., Luo, X., Yang, Y., Cui, W., Zou, J., & Zhou, S. (2010). Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-beta-cyclodextrin inoculations. International Journal of Pharmaceutics, 391(1–2), 55–64.

    Article  CAS  PubMed  Google Scholar 

  57. Mi, K., & Xing, Z. (2015). CD44(+)/CD24(−) breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold. International Journal of Nanomedicine, 10, 3043–3053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, S., Wang, X., Zhang, Z., Zhang, Y., Zhou, G., Huang, Y., Xie, Z., & Jing, X. (2015). Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomedicine, 11(5), 1047–1056.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, G., Wang, J., Wang, Y., Li, L., Guo, X., & Zhou, S. (2015). An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano, 9(2), 1161–1174.

    Article  CAS  PubMed  Google Scholar 

  60. Zamani, M., Prabhakaran, M. P., & Ramakrishna, S. (2013). Advances in drug delivery via electrospun and electrosprayed nanomaterials. International Journal of Nanomedicine, 8, 2997–3017.

    PubMed  PubMed Central  Google Scholar 

  61. Kim, Y.-J., ebara, m., & Aoyagi, T. (2013). A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Advanced Functional Materials, 23, 5753–5761.

    Article  CAS  Google Scholar 

  62. Liang, P., Zheng, J., Dai, S., Wang, J., Zhang, Z., Kang, T., & Quan, C. (2017). pH triggered re-assembly of nanosphere to nanofiber: The role of peptide conformational change for enhanced cancer therapy. Journal of Controlled Release, 260, 22–31.

    Article  CAS  PubMed  Google Scholar 

  63. Sadrearhami, Z., Morshed, M., & Varshosaz, J. (2015). Production and evaluation of polyblend of Agar and polyacrylonitrile nanofibers for in vitro release of methotrexate in cancer therapy. Fibers and Polymers, 16, 254–262.

    Article  CAS  Google Scholar 

  64. Kim, Y.-J., Park, M., Kim, M., & Kwon, O. H. (2012). Polyphenol-loaded polycaprolactone nanofibers for effective growth inhibition of human cancer cells. Materials Chemistry and Physics, 133, 674–680.

    Article  CAS  Google Scholar 

  65. Chou, S.-F., Carson, D., & Woodrow, K. A. (2015). Current strategies for sustaining drug release from electrospun nanofibers. Journal of Controlled Release, 220, 584–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carson, D., Jiang, Y., & Woodrow, K. A. (2016). Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers. Pharmaceutical Research, 33(1), 125–136.

    Article  CAS  PubMed  Google Scholar 

  67. Xie, J., & Wang, C. H. (2006). Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharmaceutical Research, 23(8), 1817–1826.

    Article  CAS  PubMed  Google Scholar 

  68. McDonald, P. F., Lyons, J. G., Geever, L. M., & Higginbotham, C. L. (2010). In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone). Journal of Materials Science, 45(5), 1284–1292.

    Article  CAS  Google Scholar 

  69. He, C. L., Huang, Z. M., Han, X. J., Liu, L., Zhang, H. S., & Chen, L. S. (2006). Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery. Journal of Macromolecular Science, Part B, 45(4), 515–524.

    Article  CAS  Google Scholar 

  70. Reise, M., Wyrwa, R., Muller, U., Zylinski, M., Volpel, A., Schnabelrauch, M., Berg, A., Jandt, K. D., Watts, D. C., & Sigusch, B. W. (2012). Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment. Dental Materials, 28(2), 179–188.

    Article  CAS  PubMed  Google Scholar 

  71. Verreck, G., Chun, I., Rosenblatt, J., Peeters, J., Dijck, A. V., Mensch, J., Noppe, M., & Brewster, M. E. (2003). Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. Journal of Controlled Release, 92(3), 349–360.

    Article  CAS  PubMed  Google Scholar 

  72. Llorens, E., Ibanez, H., Del Valle, L. J., & Puiggali, J. (2015). Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol. Materials Science & Engineering. C, Materials for Biological Applications, 49, 472–484.

    Article  CAS  Google Scholar 

  73. Yang, J. M., Zha, L. S., Yu, D. G., & Liu, J. (2013). Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles. Colloids and Surfaces. B, Biointerfaces, 102, 737–743.

    Article  CAS  PubMed  Google Scholar 

  74. He, M., Xue, J., Geng, H., Gu, H., Chen, D., Shi, R., & Zhang, L. (2015). Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release. Applied Surface Science, 335, 121–129.

    Article  CAS  Google Scholar 

  75. Tiwari, S. K., Tzezana, R., Zussman, E., & Venkatraman, S. S. (2010). Optimizing partition-controlled drug release from electrospun core-shell fibers. International Journal of Pharmaceutics, 392(1–2), 209–217.

    Article  CAS  PubMed  Google Scholar 

  76. Yu, H., Jia, Y., Yao, C., & Lu, Y. (2014). PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. International Journal of Pharmaceutics, 469(1), 17–22.

    Article  CAS  PubMed  Google Scholar 

  77. Kiatyongchai, T., Wongsasulak, S., & Yoovidhya, T. (2014). Coaxial electrospinning and release characteristics of cellulose acetate-gelatin blend encapsulating a model drug. Journal of Applied Polymer Science, 131(8), n/a–n/a.

    Article  CAS  Google Scholar 

  78. Sohrabi, A., Shaibani, P. M., Etayash, H., Kaur, K., & Thundat, T. (2013). Sustained drug release and antibacterial activity of ampicillin incorporated poly(methyl methacrylate)–nylon6 core/shell nanofibers. Polymer, 54(11), 2699–2705.

    Article  CAS  Google Scholar 

  79. Ball, C., Krogstad, E., Chaowanachan, T., & Woodrow, K. A. (2012). Drug-eluting fibers for HIV-1 inhibition and contraception. PLoS One, 7(11), e49792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, C., Soenen, S. J., van Gulck, E., Vanham, G., Rejman, J., Van Calenbergh, S., Vervaet, C., Coenye, T., Verstraelen, H., Temmerman, M., et al. (2012). Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials, 33(3), 962–969.

    Article  CAS  PubMed  Google Scholar 

  81. Varkey, M., Gittens, S. A., & Uludag, H. (2004). Growth factor delivery for bone tissue repair: An update. Expert Opinion Drug Delivery, 1(1), 19–36.

    Article  CAS  Google Scholar 

  82. Chen, P., Wu, Q. S., Ding, Y. P., Chu, M., Huang, Z. M., & Hu, W. (2010). A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 76(3), 413–420.

    Article  CAS  PubMed  Google Scholar 

  83. Chew, S. Y., Wen, J., Yim, E., & Leong, K. W. (2005). Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 6, 2017–2024.

    Article  CAS  PubMed  Google Scholar 

  84. Patel, S., Kurpinski, K., Quigley, R., Gao, H., Hsiao, B. S., Poo, M., & Li, S. (2007). Bioactive nanofibers-synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Letters, 7(7), 2122–2128.

    Article  CAS  PubMed  Google Scholar 

  85. Sahoo, S., Ang, L. T., Goh, J. C., & Toh, S. L. (2010). Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. Journal of Biomedical Materials Research. Part A, 93(4), 1539–1550.

    PubMed  Google Scholar 

  86. Mottaghitalab, F., Farokhi, M., Mottaghitalab, V., Ziabari, M., Divsalar, A., & Shokrgozar, M. A. (2011). Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydrate Polymers, 86(2), 526–535.

    Article  CAS  Google Scholar 

  87. Zomer Volpato, F., Almodovar, J., Erickson, K., Popat, K. C., Migliaresi, C., & Kipper, M. J. (2012). Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomaterialia, 8(4), 1551–1559.

    Article  CAS  PubMed  Google Scholar 

  88. Liao, I. C., Chen, S., Liu, J., & Leong, K. (2009). Sustained viral gene delivery through core-shell fibers. Journal of Controlled Release: Official Journal of the Controlled Release Society, 139, 48–55.

    Article  CAS  Google Scholar 

  89. Wang, J., An, Q., Li, D., Wu, T., Chen, W., Sun, B., El-Hamshary, H., Al-Deyab, S. S., Zhu, W., & Mo, X. (2015). Heparin and vascular endothelial growth factor loaded poly(L-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment. Journal of Biomedical Nanotechnology, 11(11), 1947–1960.

    Article  CAS  PubMed  Google Scholar 

  90. Yu, Y. Q., Jiang, X. S., Gao, S., Ma, R., Jin, Y., Jin, X., Peng, S. Y., Mao, H. Q., & Li, J. T. (2014). Local delivery of vascular endothelial growth factor via nanofiber matrix improves liver regeneration after extensive hepatectomy in rats. Journal of Biomedical Nanotechnology, 10(11), 3407–3415.

    Article  CAS  PubMed  Google Scholar 

  91. Kim, T. H., Kim, J. J., & Kim, H. W. (2014). Basic fibroblast growth factor-loaded, mineralized biopolymer-nanofiber scaffold improves adhesion and proliferation of rat mesenchymal stem cells. Biotechnology Letters, 36(2), 383–390.

    Article  CAS  PubMed  Google Scholar 

  92. Jain, V., Jain, S., & Mahajan, S. (2015). Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Current Drug Delivery, 12(2), 177–191.

    Article  CAS  PubMed  Google Scholar 

  93. Maitra, A., Arking, D. E., Shivapurkar, N., Ikeda, M., Stastny, V., Kassauei, K., Sui, G., Cutler, D. J., Liu, Y., Brimble, S. N., et al. (2005). Genomic alterations in cultured human embryonic stem cells. Nature Genetics, 37(10), 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  94. Lai, K., Kaspar, B., Gage, F., & Schaffer, D. (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neuroscience, 6, 21–27.

    Article  CAS  PubMed  Google Scholar 

  95. Gropp, M., Itsykson, P., Singer, O., Ben-Hur, T., Reinhartz, E., Galun, E., & Reubinoff, B. E. (2003). Stable genetic modification of human embryonic stem cells by lentiviral vectors. Molecular Therapy, 7(2), 281–287.

    Article  CAS  PubMed  Google Scholar 

  96. Walther, W., & Schlag, P. (2013). Current status of gene therapy for cancer. Current Opinion in Oncology, 25, 659–664.

    Article  CAS  PubMed  Google Scholar 

  97. Réjiba, S., Bigand, C., Parmentier, C., Masmoudi, A., & Hajri, A. (2013). Oncosuppressive suicide gene Virotherapy “PVH1-yCD/5-FC” for pancreatic peritoneal carcinomatosis treatment: NFκB and Akt/PI3K involvement. PLoS One, 8, e70594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Jang, J.-H., Houchin, T., Shea, L., Jang, J. H., Houchin, T. L., & Shea, L. D. (2004). Gene delivery from polymer scaffolds for tissue engineering. Expert Review of Medical Devices, 1, 127–138.

    Article  CAS  PubMed  Google Scholar 

  99. Shea, L., Smiley, E., Bonadio, J., Mooney, D., Shea, L. D., Smiley, E., Bonadio, J., & Mooney, D. J. (1999). DNA delivery from polymer matrices for tissue engineering. Nature Biotechnology, 17, 551–554.

    Article  CAS  PubMed  Google Scholar 

  100. Yates, F., Daley, G., Yates, F., & Daley, G. Q. (2006). Progress and prospects: Gene transfer into embryonic stem cells. Gene Therapy, 13, 1431–1439.

    Article  CAS  PubMed  Google Scholar 

  101. Hanna, E., Remuzat, C., Auquier, P., & Toumi, M. (2017). Gene therapies development: Slow progress and promising prospect. Journal of Market Access Health Policy, 5(1), 1265293.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nayerossadat, N., Maedeh, T., & Ali, P. A. (2012). Viral and nonviral delivery systems for gene delivery. Advanced Biomedical Research, 1, 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Cao, H., Jiang, X., Chai, C., & Chew, S. Y. (2010). RNA interference by nanofiber-based siRNA delivery system. Journal of Controlled Release, 144(2), 203–212.

    Article  CAS  PubMed  Google Scholar 

  104. Chen, M., Gao, S., Dong, M., Song, J., Yang, C., Howard, H. A., Kjems, K., & Besenbacher, F. (2012). Chitosan-siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano, 6(6), 4835–4844.

    Article  CAS  PubMed  Google Scholar 

  105. Chooi, W. H., Ong, W., Murray, A., Lin, J., Nizetic, D., & Chew, S. Y. (2018). Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells. Biomaterials Science, 6(11), 3019–3029.

    Article  CAS  PubMed  Google Scholar 

  106. He, S., Xia, T., Wang, H., Wei, L., Luo, X., & Li, X. (2012). Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomaterialia, 8(7), 2659–2669.

    Article  CAS  PubMed  Google Scholar 

  107. Hu, W. W., & Ting, J. C. (2019). Gene immobilization on alginate/polycaprolactone fibers through electrophoretic deposition to promote in situ transfection efficiency and biocompatibility. International Journal of Biological Macromolecules, 121, 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  108. Karthikeyan, K., Krishnaswamy, V. R., Lakra, R., Kiran, M. S., & Korrapati, P. S. (2015). Fabrication of electrospun zein nanofibers for the sustained delivery of siRNA. Journal of Materials Science. Materials in Medicine, 26(2), 101.

    Article  CAS  PubMed  Google Scholar 

  109. Kim, H. S., & Yoo, H. S. (2010). MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: In vitro and in vivo evaluation. Journal of Controlled Release, 145(3), 264–271.

    Article  CAS  PubMed  Google Scholar 

  110. Kim, H. S., & Yoo, H. S. (2013). Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Therapy, 20(4), 378–385.

    Article  CAS  PubMed  Google Scholar 

  111. Lee, S., Kim, J. S., Chu, H. S., Kim, G. W., Won, J. I., & Jang, J. H. (2011). Electrospun nanofibrous scaffolds for controlled release of adeno-associated viral vectors. Acta Biomaterialia, 7(11), 3868–3876.

    Article  CAS  PubMed  Google Scholar 

  112. Liang, D., Luu, Y., Kim, K., Hsiao, B., Hadjiargyrou, M., & Chu, B. (2005). In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Research, 33, e170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Low, W. C., Rujitanaroj, P. O., Lee, D. K., Kuang, J., Messersmith, P. B., Chan, J. K., & Chew, S. Y. (2015). Mussel-inspired modification of nanofibers for REST siRNA delivery: Understanding the effects of gene-silencing and substrate topography on human mesenchymal stem cell neuronal commitment. Macromolecular Bioscience, 15(10), 1457–1468.

    Article  CAS  PubMed  Google Scholar 

  114. Low, W. C., Rujitanaroj, P. O., Lee, D. K., Messersmith, P. B., Stanton, L. W., Goh, E., & Chew, S. Y. (2013). Nanofibrous scaffold-mediated REST knockdown to enhance neuronal differentiation of stem cells. Biomaterials, 34(14), 3581–3590.

    Article  CAS  PubMed  Google Scholar 

  115. Luu, Y. K., Kim, K., Hsiao, B. S., Chu, B., & Hadjiargyrou, M. (2003). Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. Journal of Controlled Release, 89(2), 341–353.

    Article  CAS  PubMed  Google Scholar 

  116. Mazza, M., Hadjidemetriou, M., La’zaro, I., Bussy, C., & Kostarelos, K. (2015). Peptide nanofiber complexes with siRNA for deep brain gene silencing by stereotactic neurosurgery. ACS Nano, 9(2), 1137–1149.

    Article  CAS  PubMed  Google Scholar 

  117. Nie, H., Ho, M. L., Wang, C. K., Wang, C. H., & Fu, Y. C. (2009). BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials, 30(5), 892–901.

    Article  CAS  PubMed  Google Scholar 

  118. Nie, H., & Wang, C.-H. (2007). Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Journal of Controlled Release, 120(1), 111–121.

    Article  CAS  PubMed  Google Scholar 

  119. Pinese, C., Lin, J., Milbreta, U., Li, M., Wang, Y., Leong, K. W., & Chew, S. Y. (2018). Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomaterialia, 76, 164–177.

    Article  CAS  PubMed  Google Scholar 

  120. Qin, L., Yan, P., Xie, C., Huang, J., Ren, Z., Li, X., Best, S., Cai, X., & Han, G. (2018). Gold nanorod-assembled ZnGa2O4:Cr nanofibers for LED-amplified gene silencing in cancer cells. Nanoscale, 10(28), 13432–13442.

    Article  CAS  PubMed  Google Scholar 

  121. Rujitanaroj, P. O., Jao, B., Yang, J., Wang, F., Anderson, J. M., Wang, J., & Chew, S. Y. (2013). Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomaterialia, 9(1), 4513–4524.

    Article  CAS  PubMed  Google Scholar 

  122. Rujitanaroj, P. O., Wang, Y. C., Wang, J., & Chew, S. Y. (2011). Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials, 32(25), 5915–5923.

    Article  CAS  PubMed  Google Scholar 

  123. Sakai, S., Yamada, Y., Yamaguchi, T., Ciach, T., & Kawakami, K. (2009). Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(L-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery. Journal of Biomedical Materials Research. Part A, 88(2), 281–287.

    Article  PubMed  CAS  Google Scholar 

  124. Saraf, A., Baggett, L., Raphael, R., Kasper, F., & Mikos, A. (2009). Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. Journal of Controlled Release: Official Journal of the Controlled Release Society, 143, 95–103.

    Article  CAS  Google Scholar 

  125. Wang, W., Zhang, K., & Chen, D. (2018). From tunable DNA/polymer self-assembly to tailorable and morphologically pure core-shell nanofibers. Langmuir, 34(50), 15350–15359.

    Article  CAS  PubMed  Google Scholar 

  126. Yang, Y., Li, X., Cheng, L., He, S., Zou, J., Chen, F., & Zhang, Z. (2011). Core-sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomaterialia, 7(6), 2533–2543.

    Article  CAS  PubMed  Google Scholar 

  127. Zou, B., Liu, Y., Luo, X., Chen, F., Guo, X., & Li, X. (2012). Electrospun fibrous scaffolds with continuous gradations in mineral contents and biological cues for manipulating cellular behaviors. Acta Biomaterialia, 8(4), 1576–1585.

    Article  CAS  PubMed  Google Scholar 

  128. Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., & Chan, C. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1(5), 16014.

    Article  CAS  Google Scholar 

  129. Agarwal, S., Wendorff, J. H., & Greiner, A. (2009). Progress in the field of electrospinning for tissue engineering applications. Advanced Materials, 21(32–33), 3343–3351.

    Article  CAS  PubMed  Google Scholar 

  130. Williams, G., Chatterton, N., Nazir, T., Yu, D., Zhu, L.-M., & Branford-White, C. (2012). Electrospun nanofibers in drug delivery: Recent developments and perspectives. Therapeutic Delivery, 3, 515–533.

    Article  CAS  PubMed  Google Scholar 

  131. Lee, S., Cho, S., Kim, M., Jin, G., Jeong, U., & Jang, J.-H. (2014). Highly moldable electrospun clay-like fluffy nanofibers for three-dimensional scaffolds. ACS Applied Materials & Interfaces, 6, 1082–1091.

    Article  CAS  Google Scholar 

  132. Shimanovich, U., Tkacz, I., Eliaz, D., Cavaco-Paulo, A., Michaeli, S., & Gedanken, A. (2011). Encapsulation of RNA molecules in BSA microspheres and internalization into Trypanosoma Brucei parasites and human U2OS cancer cells. Advanced Functional Materials, 21, 3659–3666.

    Article  CAS  Google Scholar 

  133. Trabulo, S., Resina, S., Lebleu, B., Pedroso de Lima, M., Trabulo, S., Resina, S., Simões, S., Lebleu, B., & Pedroso de Lima, M. C. (2010). A non-covalent strategy combining cationic lipids and CPPs to enhance the delivery of splice correcting oligonucleotides. Journal of Controlled Release: Official Journal of the Controlled Release Society, 145, 149–158.

    Article  CAS  Google Scholar 

  134. Achille, C., Sundaresh, S., Chu, B., & Hadjiargyrou, M. (2012). Cdk2 silencing via a DNA/PCL electrospun scaffold suppresses proliferation and increases death of breast cancer cells. PLoS One, 7, e52356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xie, J. (2015). Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique. ACS Bimaterials Science & Engineering, 1, 991.

    Article  CAS  Google Scholar 

  136. Bago, R., Pegna, G. J., Okolie, O., Mohiti-Asli, M., Loboa, E., & Hingtgen, S. (2016). Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials, 90, 116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, Z., Ma, R., Yan, L., Chen, X., & Zhu, G. (2015). Combined chemotherapy and photodynamic therapy using a nanohybrid based on layered double hydroxides to conquer cisplatin resistance. Chemical Communications (Camb), 51(58), 11587–11590.

    Article  CAS  Google Scholar 

  138. Liu, Y., Zhang, X., Zhou, M., Nan, X., Chen, X., & Zhang, X. (2017). Mitochondrial-targeting Lonidamine-doxorubicin nanoparticles for synergistic chemotherapy to conquer drug resistance. ACS Applied Materials & Interfaces, 9(50), 43498–43507.

    Article  CAS  Google Scholar 

  139. Fu, Y., Li, X., Ren, Z., Mao, C., & Han, G. (2018). Multifunctional electrospun nanofibers for enhancing localized cancer treatment. Small, e1801183.

    Google Scholar 

  140. Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), 941–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. He, Y., Li, X., Ma, J., Ni, G., Yang, G., & Zhou, S. (2019). Programmable codelivery of doxorubicin and Apatinib using an implantable hierarchical-structured Fiber device for overcoming cancer multidrug resistance. Small, 15(8), 1804397.

    Article  CAS  Google Scholar 

  142. Xiao, Y., Shen, M., & Shi, X. (2018). Design of functional electrospun nanofibers for cancer cell capture applications. Journal of Materials Chemistry B, 6(10), 1420–1432.

    Article  CAS  PubMed  Google Scholar 

  143. Zhao, Y., Fan, Z., Shen, M., & Shi, X. (2015). Hyaluronic acid-functionalized electrospun polyvinyl alcohol/Polyethylenimine nanofibers for Cancer cell capture applications. Advanced Materials Interfaces, 2(15), 1500256.

    Article  CAS  Google Scholar 

  144. Zhao, Y., Zhu, X., Liu, H., Luo, Y., Wang, S., Shen, M., Zhu, M., & Shi, X. (2014). Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications. Journal of Materials Chemistry B, 2(42), 7384–7393.

    Article  CAS  PubMed  Google Scholar 

  145. Wang, S., Zhu, J., Shen, M., Zhu, M., & Shi, X. (2014). Poly(amidoamine) Dendrimer-enabled simultaneous stabilization and functionalization of electrospun poly(γ-glutamic acid) nanofibers. ACS Applied Materials & Interfaces, 6, 2153.

    Article  CAS  Google Scholar 

  146. Zhang, N., Deng, Y., Tai, Q., Cheng, B., Zhao, L., Shen, Q., He, R., Hong, L., Liu, W., Guo, S., et al. (2012). Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Advanced Materials, 24(20), 2756–2760.

    Article  CAS  PubMed  Google Scholar 

  147. Zha, Z., Cohn, C., Dai, Z., Qiu, W., Zhang, J., & Wu, X. (2011). Nanofibrous lipid membranes capable of functionally immobilizing antibodies and capturing specific cells. Advanced Materials, 23(30), 3435–3440.

    Article  CAS  PubMed  Google Scholar 

  148. Zha, Z., Jiang, L., Dai, Z., & Wu, X. (2012). A biomimetic mechanism for antibody immobilization on lipid nanofibers for cell capture. Applied Physics Letters, 101(19), 193701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Sun, N., Liu, M., Jine, W., Zhili, W., Li, X., Jiang, B., & Pei, R. (2016). Chitosan nanofibers for specific capture and nondestructive release of CTCs assisted by pCBMA brushes. Small, 12, 5090–5097.

    Article  CAS  PubMed  Google Scholar 

  150. Yoon, J., Yoon, H. S., Shin, Y., Kim, S., Ju, Y., Kim, J., & Chung, S. (2017). Ethanol-dispersed and antibody-conjugated polymer nanofibers for the selective capture and 3-dimensional culture of EpCAM-positive cells. Nanomedicine, 13(5), 1617–1625.

    Article  CAS  PubMed  Google Scholar 

  151. Jackson, J. M., Witek, M. A., Kamande, J. W., & Soper, S. A. (2017). Materials and microfluidics: Enabling the efficient isolation and analysis of circulating tumour cells. Chemical Society Reviews, 46(14), 4245–4280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Myung, J. H., & Hong, S. (2015). Microfluidic devices to enrich and isolate circulating tumor cells. Lab on a Chip, 15(24), 4500–4511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu, Z., Zhang, W., Huang, F., Feng, H., Shu, W., Xu, X., & Chen, Y. (2013). High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosensors & Bioelectronics, 47, 113–119.

    Article  CAS  Google Scholar 

  154. Liu, H.-Q., Yu, X.-L., Cai, B., You, S.-J., He, Z., Huang, Q.-Q., Rao, L., Li, S.-S., Liu, C., Sun, W.-W., et al. (2015). Capture and release of cancer cells using electrospun etchable MnO2 nanofibers integrated in microchannels. Applied Physics Letters, 106, 093703.

    Article  CAS  Google Scholar 

  155. Hou, S., Zhao, L., Shen, Q., Yu, J., Ng, C., Kong, X., Wu, D., Song, M., Shi, X., Xu, X., et al. (2013). Inside back cover: Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma. Cells Angewandte Chemie International Edition, 52(12), 3533–3533.

    Article  Google Scholar 

  156. Wu, L., & Qu, X. (2015). Cancer biomarker detection: Recent achievements and challenges. Chemical Society Reviews, 44, 2963–2997.

    Article  CAS  PubMed  Google Scholar 

  157. Rakovich, T., Mahfoud, O., Mohamed, B., Prina-Mello, A., Crosbie Staunton, K., Van Den Broeck, T., De Kimpe, L., Sukhanova, A., Baty, D., Rakovich, A., et al. (2014). Highly sensitive single domain antibody-quantum dot conjugates for detection of HER2 biomarker in lung and breast cancer cells. ACS Nano, 8, 5682.

    Article  CAS  PubMed  Google Scholar 

  158. Xu, J.-J., Zhao, W.-W., Song, S., Fan, C., & Chen, H.-Y. (2014). ChemInform abstract: Functional nanoprobes for ultrasensitive detection of biomolecules: An update. ChemInform, 45(18), 1601–1611.

    Article  Google Scholar 

  159. Yu Ding, Y., Wang, Y., Su, L., Bellagamba, M., Zhang, H., & Lei, Y. (2010). Electrospun Co(3)O(4) nanofibers for sensitive and selective glucose detection. Biosensors & Bioelectronics, 26, 542–548.

    Article  CAS  Google Scholar 

  160. Hu, J., & Easley, C. (2011). A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis. The Analyst, 136, 3461–3468.

    Article  CAS  PubMed  Google Scholar 

  161. Hu, J., Sollie, R., & Easley, C. (2010). Improvement of sensitivity and dynamic range in proximity ligation assays by asymmetric connector hybridization. Analytical Chemistry, 82, 6976–6982.

    Article  PubMed  CAS  Google Scholar 

  162. Wang, X., Wang, X., Wang, X., Chen, F., Zhu, K., & Tang, M. (2013). Novel electrochemical biosensor based on functional composite nanofibers for sensitive detection of p53 tumor suppressor gene. Analytica Chimica Acta, 765, 63–69.

    Article  CAS  PubMed  Google Scholar 

  163. Davis, B., Niamnont, N., Hare, C., Sukwattanasinitt, M., & Cheng, Q. (2010). Nanofibers doped with dendritic fluorophores for protein detection. ACS Applied Materials & Interfaces, 2, 1798–1803.

    Article  CAS  Google Scholar 

  164. Hu, J., Wang, T., Shannon, C., & Easley, C. (2012). Quantitation of Femtomolar protein levels via direct readout with the electrochemical proximity assay. Journal of the American Chemical Society, 134, 7066–7072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hu, J., Yu, Y., Brooks, J., Godwin, L., Somasundaram, S., Torabinejad, F., Shannon, C., & Easley, C. (2014). A reusable electrochemical proximity assay for highly selective, real-time protein quantitation in biological matrices. Journal of the American Chemical Society, 136, 8467–8474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, X., Shu, G., Gao, C., Yang, Y., & Tang, M. (2014). Electrochemical biosensor based on functional composite nanofibers for detection of K-ras gene via multiple signal amplification strategy. Analytical Biochemistry, 466, 51–58.

    Article  CAS  PubMed  Google Scholar 

  167. Bohunicky, B., & Mousa, S. (2010). Biosensors: The new wave in cancer diagnosis. Nanotechnology, Science and Applications, 4, 1–10.

    PubMed  PubMed Central  Google Scholar 

  168. Dorothee, G., MacKenzie, R., Janos, V. r. s., & Reimhult, E. (2008). Electrochemical biosensors - sensor principles and architectures. Sensors, 8(3), 1400–1458.

    Article  Google Scholar 

  169. Wei, Y., Li, X., Sun, X., Ma, H., Zhang, Y., & Wei, Q. (2017). Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on au-CoS/graphene and CeO 2 /ionic liquids doped with carboxymethyl chitosan complex. Biosensors and Bioelectronics, 94, 141–147.

    Article  CAS  PubMed  Google Scholar 

  170. Mehrvar, M., & Abdi, M. (2004). Recent developments, characteristics, and potential applications of electrochemical biosensors. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry, 20, 1113–1126.

    Article  CAS  Google Scholar 

  171. Marcus, R., & Sutin, N. (1985). Electron transfers in chemistry and biology. Biochimica Et Biophysica Acta (bba) - Reviews on Bioenergetics, 811, 265–322.

    Article  CAS  Google Scholar 

  172. Putzbach, W., & Ronkainen, N. (2013). ChemInform abstract: Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors (Basel, Switzerland), 13, 4811–4840.

    Article  CAS  Google Scholar 

  173. Tilmaciu, C., & Morris, M. (2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3, 1–21.

    Article  CAS  Google Scholar 

  174. Tyagi, S., & Kramer, F. R. (1996). Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 14(3), 303–308.

    Article  CAS  PubMed  Google Scholar 

  175. Medina, V., & Rivera, E. (2010). Histamine receptors and cancer pharmacology. British Journal of Pharmacology, 161, 755–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Seong, D., Choi, M.-S., & Kim, Y.-J. (2012). Fluorescent chemosensor for the detection of histamine based on dendritic porphyrin-incorporated nanofibers. European Polymer Journal, 48, 1988–1996.

    Article  CAS  Google Scholar 

  177. Kosaki, Y., Izawa, H., Ishihara, S., Kawakami, K., Sumita, M., Tateyama, Y., Ji, Q., Krishnan, V., Hishita, S., Yamauchi, Y., et al. (2013). Nanoporous carbon sensor with cage-in-fiber structure: Highly selective aniline adsorbent toward cancer risk management. ACS Applied Materials & Interfaces, 5, 2930–2934.

    Article  CAS  Google Scholar 

  178. Peng, G., Tisch, U., Adams, O., Hakim, M., Shehada, N., Broza, Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., & Haick, H. (2009). Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotechnology, 4, 669–673.

    Article  CAS  PubMed  Google Scholar 

  179. Yu, H., Xu, L., Cao, M., Chen, X., Wang, P., Jiao, J., & Wang, Y. (2003). Detection volatile organic compounds in breath as markers of lung cancer using a novel electronic nose, 2003.

    Google Scholar 

  180. Choi, S.-H., Ankonina, G., Youn, D.-Y., Oh, S.-G., Hong, J.-M., Rothschild, A., & Kim, I.-D. (2009). Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano, 3, 2623–2631.

    Article  CAS  PubMed  Google Scholar 

  181. Zhang, Y., He, X., Li, J., Miao, Z., & Huang, F. (2008). Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sensors and Actuators B: Chemical, 132, 67–73.

    Article  CAS  Google Scholar 

  182. Lee, C., Kim, I.-D., & Lee, J.-H. (2013). Selective and sensitive detection of trimethylamine using ZnO–In2O3 composite nanofibers. Sensors and Actuators B: Chemical, 181, 463–470.

    Article  CAS  Google Scholar 

  183. Choi, S.-J., Kim, S.-J., Koo, W.-T., Cho, H.-J., & Kim, I.-D. (2014). Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules. Chemical Communications, 51, 2609.

    Article  CAS  Google Scholar 

  184. Adiguzel, Y., & Kulah, H. (2015). Breath sensors for lung cancer diagnosis. Biosensors and Bioelectronics, 65, 121–138.

    Google Scholar 

  185. Kim, S.-J., Choi, S.-J., Yang, D.-J., Bae, J., Park, J., & Kim, I.-D. (2014). Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sensors and Actuators B: Chemical, 193, 574–581.

    Google Scholar 

  186. Kimmel, D., Leblanc, G., Meschievitz, M., & Cliffel, D. (2011). Electrochemical sensors and biosensors. Analytical Chemistry, 84, 685–707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Scanlon, M., Salaj-Kosla, U., Belochapkine, S., MacAodha, D., Leech, D., Ding, Y., & Magner, E. (2012). Characterization of nanoporous gold electrodes for bioelectrochemical applications. Langmuir: The ACS Journal of Surfaces and Colloids, 28, 2251–2261.

    Article  CAS  Google Scholar 

  188. Ali, M. A., Mondal, K., Singh, C., Malhotra, B., & Sharma Iitk, A. (2015). Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale, 7, 7234–7245.

    Article  CAS  PubMed  Google Scholar 

  189. Frenot, A., & Chronakis, I. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8, 64–75.

    Article  CAS  Google Scholar 

  190. Zhang, C.-L., & Yu, S.-H. (2014). Nanoparticles meet electrospinning: Recent advances and future prospects. Chemical Society Reviews, 43, 4423–4448.

    Article  CAS  PubMed  Google Scholar 

  191. Jordan, A., Scholz, R., Maier-Hauff, K., van Landeghem, F. K., Waldoefner, N., Teichgraeber, U., Pinkernelle, J., Bruhn, H., Neumann, F., Thiesen, B., et al. (2006). The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 78(1), 7–14.

    Article  CAS  PubMed  Google Scholar 

  192. Yanase, M., Shinkai, M., Honda, H., Wakabayashi, T., Yoshida, J., & Kobayashi, T. (1998). Intracellular hyperthermia for cancer using magnetite cationic liposomes: An in vivo study. Japanese Journal of Cancer Research, 89(4), 463–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hervault, A., & Thanh, N. T. (2014). Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 6(20), 11553–11573.

    Article  CAS  PubMed  Google Scholar 

  194. Kobayashi, T. (2011). Cancer hyperthermia using magnetic nanoparticles. Biotechnology Journal, 6(11), 1342–1347.

    Article  CAS  PubMed  Google Scholar 

  195. Santhosh, P. B., & Ulrih, N. P. (2013). Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics. Cancer Letters, 336(1), 8–17.

    Article  CAS  PubMed  Google Scholar 

  196. Mfiller, R. H., Maaben, S., Weyhers, L. H., Specht, F., & Lucks, J. S. (1996). Cytotoxicity of magnetite-loaded polylactide, polylactide-glycolide particles and solid lipid nanoparticles. International Journal of Pharmaceutics, 138, 85–94.

    Article  Google Scholar 

  197. Weissleder, R., Bogdanov, A., Neuweltb, E. A., & Papisov, M. (1995). Long-circulating iron oxides for MR imaging. Advanced Drug Delivery Reviews, 16, 321–334.

    Article  CAS  Google Scholar 

  198. Kaminski, M. D., & Rosengart, A. J. (2005). Detoxification of blood using injectable magnetic nanospheres: A conceptual technology description. Journal of Magnetism and Magnetic Materials, 293(1), 398–403.

    Article  CAS  Google Scholar 

  199. Feng, Z.-Q., Shi, C., Zhao, B., & Wang, T. (2017). Magnetic electrospun short nanofibers wrapped graphene oxide as a promising biomaterials for guiding cellular behavior. Materials Science and Engineering: C, 81, 314–320.

    Article  CAS  Google Scholar 

  200. Huang, C., Soenen, S. J., Rejman, J., Trekker, J., Chengxun, L., Lagae, L., Ceelen, W., Wilhelm, C., Demeester, J., & De Smedt, S. C. (2012). Magnetic electrospun fibers for cancer therapy. Advanced Functional Materials, 22(12), 2479–2486.

    Article  CAS  Google Scholar 

  201. Sasikala, A. R. K., Unnithan, A. R., Yun, Y.-H., Park, C. H., & Kim, C. S. (2016). An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomaterialia, 31, 122–133.

    Article  CAS  PubMed  Google Scholar 

  202. Song, C., Wang, X. X., Zhang, J., Nie, G. D., Luo, W. L., Fu, J., Ramakrishna, S., & Long, Y. Z. (2018). Electric field-assisted in situ precise deposition of electrospun gamma-Fe2O3/polyurethane nanofibers for magnetic hyperthermia. Nanoscale Research Letters, 13(1), 273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Radmansouri, M., Bahmani, E., Sarikhani, E., Rahmani, K., Sharifianjazi, F., & Irani, M. (2018). Doxorubicin hydrochloride - loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. International Journal of Biological Macromolecules, 116, 378–384.

    Article  CAS  PubMed  Google Scholar 

  204. Chen, Z., Chen, Z., Zhang, A., Hu, J., Wang, X., & Yang, Z. (2016). Electrospun nanofibers for cancer diagnosis and therapy. Biomaterials Science, 4(6), 922–932.

    Article  CAS  PubMed  Google Scholar 

  205. Fan, Y., Chen, C., Huang, Y., Zhang, F., & Lin, G. (2017). Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids and Surfaces. B, Biointerfaces, 151, 19–25.

    Article  CAS  PubMed  Google Scholar 

  206. Demirci, S., Celebioglu, A., Aytac, Z., & Uyar, T. (2014). pH-responsive nanofibers with controlled drug release properties. Polymer Chemistry, 5(6), 2050–2056.

    Article  CAS  Google Scholar 

  207. Thakkar, S., & Misra, M. (2017). Electrospun polymeric nanofibers: New horizons in drug delivery. European Journal of Pharmaceutical Sciences, 107, 148–167.

    Article  CAS  PubMed  Google Scholar 

  208. Illangakoon, U. E., Yu, D. G., Ahmad, B. S., Chatterton, N. P., & Williams, G. R. (2015). 5-fluorouracil loaded Eudragit fibers prepared by electrospinning. International Journal of Pharmaceutics, 495(2), 895–902.

    Article  CAS  PubMed  Google Scholar 

  209. Han, D., & Steckl, A. J. (2017). Selective pH-responsive core-sheath nanofiber membranes for Chem/bio/med applications: Targeted delivery of functional molecules. ACS Applied Materials & Interfaces, 9(49), 42653–42660.

    Article  CAS  Google Scholar 

  210. Tran, T., Hernandez, M., Patel, D., Burns, E., Peterman, V., & Wu, J. (2015). Controllable and switchable drug delivery of ibuprofen from temperature responsive composite nanofibers. Nano Convergence, 2(1), 15.

    Article  CAS  Google Scholar 

  211. Zhang, R. Y., Zaslavski, E., Vasilyev, G., Boas, M., & Zussman, E. (2018). Tunable pH-responsive chitosan-poly(acrylic acid) electrospun fibers. Biomacromolecules, 19(2), 588–595.

    Article  CAS  PubMed  Google Scholar 

  212. Sang, Q., Williams, G. R., Wu, H., Liu, K., Li, H., & Zhu, L. M. (2017). Electrospun gelatin/sodium bicarbonate and poly(lactide-co-epsilon-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems. Materials Science & Engineering. C, Materials for Biological Applications, 81, 359–365.

    Article  CAS  Google Scholar 

  213. Jassal, M., Boominathan, V., Ferreira, T., Sengupta, S., & Bhowmick, S. (2016). pH-responsive drug release from functionalized electrospun poly(caprolactone) scaffolds under simulated in-vivo environment. Journal of Biomaterials Science, Polymer Edition, 27, 1–34.

    Article  CAS  Google Scholar 

  214. Toncheva, A., Paneva, D., Maximova, V., Manolova, N., & Rashkov, I. (2012). Antibacterial fluoroquinolone antibiotic-containing fibrous materials from poly(L-lactide-co-D,L-lactide) prepared by electrospinning. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 47, 642–651.

    Article  CAS  Google Scholar 

  215. Ercole, F., Davis, T., & Evans, R. (2010). Photo-responsive systems and biomaterials: Photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polymer Chemistry, 1, 37.

    Article  CAS  Google Scholar 

  216. Gorostiza, P., & Isacoff, E. (2008). Optical switches for remote and noninvasive control of cell signaling. Science (New York, N.Y.), 322, 395–399.

    Article  CAS  Google Scholar 

  217. Yu, Y., Nakano, M., & Ikeda, T. (2003). Directed bending of a polymer film by light. Nature, 425(6954), 145–145.

    Article  CAS  PubMed  Google Scholar 

  218. Klajn, R., Wesson, P., Bishop, K., & Grzybowski, B. (2009). Writing self-erasing images using metastable nanoparticle “inks”. Angewandte Chemie (International Ed. in English), 48, 7035–7039.

    Article  CAS  Google Scholar 

  219. Davis, M., Brewster, M., Davis, M. E., & Brewster, M. E. (2005). Cyclodextrin-based pharmaceutics: Past, present and future. Nature Reviews. Drug Discovery, 3, 1023–1035.

    Article  CAS  Google Scholar 

  220. Wang, Y., Ma, N., Wang, Z., & Zhang, X. (2007). Photocontrolled reversible supramolecular assemblies of an Azobenzene-containing surfactant with α-Cyclodextrin. Angewandte Chemie (International Ed. in English), 46, 2823–2826.

    Article  CAS  Google Scholar 

  221. Fu, G., Xu, L., Yao, F., Li, G., & Kang, E. (2009). Smart nanofibers with a Photoresponsive surface for controlled release. ACS Applied Materials & Interfaces, 1, 2424–2427.

    Article  CAS  Google Scholar 

  222. Weissleder, R. (2001). A clearer vision for in vivo imaging. Nature Biotechnology, 19, 316–317.

    Article  CAS  PubMed  Google Scholar 

  223. Chen, J., Guo, Z., Wang, H. B., Gong, M., Kong, X. K., Xia, P., & Chen, Q. W. (2013). Multifunctional Fe3O4@C@ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials, 34(2), 571–581.

    Article  PubMed  CAS  Google Scholar 

  224. Kurapati, R., & Raichur, A. (2013). Near-infrared light-responsive graphene oxide composite multilayer capsules: A novel route for remote controlled drug delivery. Chemical Communications, 49, 734.

    Article  CAS  PubMed  Google Scholar 

  225. Yashchenok, A., Bratashov, D., Gorin, D., Lomova, M., Pavlov, A., Sapelkin, A., Shim, B., Khomutov, G., Kotov, N., Sukhorukov, G., et al. (2010). Carbon nanotubes on polymeric microcapsules: Free-standing structures and point-wise laser openings. Advanced Functional Materials, 20, 3136–3142.

    Article  CAS  Google Scholar 

  226. Zhang, Z., Wang, L., Wang, J., Jiang, X.-M., Li, X., Hu, Z., Yinglu, J., Wu, X., Chen, C., Zhang, Z., Wang, L., Wang, J., Jiang, X., Li, X., Hu, Z., Ji, Y., Wu, X., & Chen, C. (2012). Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Advanced Materials (Deerfield Beach, Fla.), 24, 1418–1423.

    Article  CAS  Google Scholar 

  227. Cobley, C., Chen, J., Cho, E., Wang, L., & Xia, Y. (2011). ChemInform abstract: Gold nanostructures: A class of multifunctional materials for biomedical applications. Chemical Society Reviews, 40, 44–56.

    Article  CAS  PubMed  Google Scholar 

  228. Kang, H., Trondoli, A., Zhu, G., Chen, Y., Chang, Y.-J., Liu, H., Huang, Y.-F., Zhang, X., & Tan, W. (2011). Near-infrared light-responsive Core-Shell Nanogels for targeted drug delivery. ACS Nano, 5, 5094–5099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hribar, K., Lee, M., Lee, D. H., & Burdick, J. (2011). Enhanced release of small molecules from near-infrared light responsive polymer-Nanorod composites. ACS Nano, 5, 2948–2956.

    Article  CAS  PubMed  Google Scholar 

  230. Wei, Q., Ji, J., & Shen, J. (2008). Synthesis of near-infrared responsive gold Nanorod/PNIPAAm Core/Shell Nanohybrids via surface initiated ATRP for smart drug delivery. Macromolecular Rapid Communications, 29, 645–650.

    Article  CAS  Google Scholar 

  231. Sivakumaran, D., Bakaic, E., Campbell, S., Xu, F., Mueller, E., & Hoare, T. (2018). Fabricating degradable thermoresponsive hydrogels on multiple length scales via reactive extrusion, microfluidics, self-assembly, and electrospinning. Journal of Visualized Experiments, 2018, 54502.

    Google Scholar 

  232. Liu, L., Bai, S., Yang, H., Li, S., Quan, J., Zhu, L., & Nie, H. (2016). Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: The effects of hydrophilicity/hydrophobicity of a drug. Materials Science and Engineering: C, 67, 581–589.

    Article  CAS  Google Scholar 

  233. Slemming-Adamsen, P., Song, J., Dong, M., Besenbacher, F., & Chen, M. (2015). In situ cross-linked pNIPAM/gelatin nanofibers for thermo-responsive drug release. Macromolecular Materials and Engineering, 300, 1226–1231.

    Google Scholar 

  234. Zhang, H., Niu, Q., Wang, N., Nie, J., & Ma, G. (2015). Thermo-sensitive drug controlled release PLA core/ pNIPAM shell fibers fabricated using a combination of electrospinning and UV photo-polymerization. European Polymer Journal, 71, 440–451.

    Google Scholar 

  235. Cicotte, K., Reed, J., Nguyen, P., Lora, J., Dirk, E., & Canavan, H. (2017). Optimization of electrospun poly( N- isopropyl acrylamide) mats for the rapid reversible adhesion of mammalian cells. Biointerphases, 12, 02C417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Liu, L., Bakhshi, H., Shaohua, J., Schmalz, H., & Agarwal, S. (2018). Composite polymeric membranes with directionally embedded fibers for controlled dual actuation. Macromolecular Rapid Communications, 39, 1800082.

    Article  CAS  Google Scholar 

  237. Li, H., Sang, Q., Wu, J., Williams, G., Wang, H., Niu, S., Wu, J., & Zhu, L.-M. (2018). Dual-responsive drug delivery systems prepared by blend electrospinning. International Journal of Pharmaceutics, 543, 1–7.

    Article  CAS  PubMed  Google Scholar 

  238. Li, H., Liu, K., Williams, G. R., Wu, J., Wu, J., Wang, H., Niu, S., & Zhu, L.-M. (2018). Dual temperature and pH responsive nanofiber formulations prepared by electrospinning. Colloids and Surfaces B: Biointerfaces, 171, 142–149.

    Article  PubMed  CAS  Google Scholar 

  239. Hu, J., Li, H.-Y., Williams, G., Yang, H.-H., Tao, L., & Zhu, L.-M. (2016). Electrospun poly(N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. Journal of Pharmaceutical Sciences, 105(3), 1104–1112.

    Article  CAS  PubMed  Google Scholar 

  240. Han, D., Yu, X., Chai, Q., Ayres, N., & Steckl, A. (2017). Stimuli-responsive self-Immolative polymer nanofiber membranes formed by coaxial electrospinning. ACS Applied Materials & Interfaces, 9, 11858–11865.

    Article  CAS  Google Scholar 

  241. Wen, Y., & Collier, J. (2015). Supramolecular peptide vaccines: Tuning adaptive immunity. Current Opinion in Immunology, 35, 73–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Rudra, J., Tian, Y., Jung, P., & Collier, J. (2010). A self-assembling peptide acting as an immune adjuvant. Proceedings of the National Academy of Sciences of the United States of America, 107, 622–627.

    Article  CAS  PubMed  Google Scholar 

  243. Pompano, R., Chen, J., Verbus, E., Han, H., Fridman, A., McNeeley, T., Collier, J., & Chong, A. (2014). Titrating T-cell epitopes within self-assembled vaccines optimizes CD4+ helper T cell and antibody outputs. Advanced Healthcare Materials, 3, 1898–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hudalla, G., Sun, T., Gasiorowski, J., Han, H., Tian, Y., Chong, A., & Collier, J. (2014). Gradated assembly of multiple proteins into supramolecular nanomaterials. Nature Materials, 13, 829–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wen, Y., Roudebush, S. L., Buckholtz, G. A., Goehring, T. R., Giannoukakis, N., Gawalt, E. S., & Meng, W. S. (2014). Coassembly of amphiphilic peptide EAK16-II with histidinylated analogues and implications for functionalization of beta-sheet fibrils in vivo. Biomaterials, 35(19), 5196–5205.

    Article  CAS  PubMed  Google Scholar 

  246. Zheng, Y., Wen, Y., George, A. M., Steinbach, A. M., Phillips, B. E., Giannoukakis, N., Gawalt, E. S., & Meng, W. S. (2011). A peptide-based material platform for displaying antibodies to engage T cells. Biomaterials, 32(1), 249–257.

    Article  CAS  PubMed  Google Scholar 

  247. Wen, Y., Liu, W., Bagia, C., Zhang, S., Bai, M., Janjic, J. M., Giannoukakis, N., Gawalt, E. S., & Meng, W. S. (2014). Antibody-functionalized peptidic membranes for neutralization of allogeneic skin antigen-presenting cells. Acta Biomaterialia, 10(11), 4759–4767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Wen, Y., Kolonich, H. R., Kruszewski, K. M., Giannoukakis, N., Gawalt, E. S., & Meng, W. S. (2013). Retaining antibodies in tumors with a self-assembling injectable system. Molecular Pharmaceutics, 10(3), 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  249. Tajima, A., Liu, W., Pradhan, I., Bertera, S., Bagia, C., Trucco, M., Meng, W. S., & Fan, Y. (2015). Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel. Clinical Immunology, 160(1), 82–89.

    Article  CAS  PubMed  Google Scholar 

  250. Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP–dependent transporters. Nature Reviews Cancer, 2(1), 48–58.

    Article  CAS  PubMed  Google Scholar 

  251. Szakács, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., & Gottesman, M. M. (2006). Targeting multidrug resistance in cancer. Nature Reviews Drug Discovery, 5(3), 219–234.

    Article  PubMed  CAS  Google Scholar 

  252. Zhang, Z., Wu, Y., Kuang, G., Liu, S., Zhou, D., Chen, X., Jing, X., & Huang, Y. (2017). Pt(iv) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment. Journal of Materials Chemistry B, 5(11), 2115–2125.

    Article  CAS  PubMed  Google Scholar 

  253. Niiyama, E., Uto, K., Lee, C. M., Sakura, K., & Ebara, M. (2019). Hyperthermia nanofiber platform synergized by sustained release of paclitaxel to improve antitumor efficiency. Advanced Healthcare Materials, 8(13), e1900102.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Zhejiang Provincial Medical and Health Technology Foundation of China (2020RC125).

Notes

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, H., Jie, T., Zheng, L., Huang, C., Chen, G., Cui, W. (2021). Electrospun Nanofibers for Cancer Therapy. In: Fontana, F., Santos, H.A. (eds) Bio-Nanomedicine for Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-58174-9_8

Download citation

Publish with us

Policies and ethics