Skip to main content

Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation Rate of an Evolutionary Algorithm

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Abstract

It is well known that evolutionary algorithms (EAs) achieve peak performance only when their parameters are suitably tuned to the given problem. Even more, it is known that the best parameter values can change during the optimization process. Parameter control mechanisms are techniques developed to identify and to track these values.

Recently, a series of rigorous theoretical works confirmed the superiority of several parameter control techniques over EAs with best possible static parameters. Among these results are examples for controlling the mutation rate of the \((1+\lambda )\) EA when optimizing the OneMax problem. However, it was shown in [Rodionova et al., GECCO’19] that the quality of these techniques strongly depends on the offspring population size \(\lambda \).

We introduce in this work a new hybrid parameter control technique, which combines the well-known one-fifth success rule with Q-learning. We demonstrate that our HQL mechanism achieves equal or superior performance to all techniques tested in [Rodionova et al., GECCO’19] and this – in contrast to previous parameter control methods – simultaneously for all offspring population sizes \(\lambda \). We also show that the promising performance of HQL is not restricted to OneMax, but extends to several other benchmark problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aleti, A., Moser, I.: Entropy-based adaptive range parameter control for evolutionary algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2013), pp. 1501–1508 (2013)

    Google Scholar 

  2. Bäck, T.: The interaction of mutation rate, selection, and self-adaptation within a genetic algorithm. In: Proceedings of Parallel Problem Solving from Nature (PPSN 1992), pp. 87–96. Elsevier (1992)

    Google Scholar 

  3. Bartz-Beielstein, T., Flasch, O., Koch, P., Konen, W.: SPOT: a toolbox for interactive and automatic tuning in the R environment. In: Proceedings of the 20th Workshop on Computational Intelligence, pp. 264–273. Universitätsverlag Karlsruhe (2010)

    Google Scholar 

  4. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm configuration of CMA-ES with limited budget. In: Proceedings of Genetic and Evolutionary Conference (GECCO 2017), pp. 681–688. ACM (2017)

    Google Scholar 

  5. Buzdalova, A., Doerr, C., Rodionova, A.: Hybridizing the 1/5-th success rule with Q-learning for controlling the mutation rate of an evolutionary algorithm (2020). http://arxiv.org/abs/2006.11026

  6. Carvalho Pinto, E., Doerr, C.: Towards a more practice-aware runtime analysis of evolutionary algorithms (2018). https://arxiv.org/abs/1812.00493

  7. Costa, L.D., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2008), pp. 913–920. ACM (2008)

    Google Scholar 

  8. Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  9. Devroye, L.: The compound random search. Ph.D. dissertation, Purdue University, West Lafayette, IN (1972)

    Google Scholar 

  10. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimization: provable performance gains through dynamic parameter choices. Theory of Evolutionary Computation. NCS, pp. 271–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_6. Also available online at https://arxiv.org/abs/1804.05650

    Chapter  MATH  Google Scholar 

  11. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theor. Comput. Sci. 773, 115–137 (2019)

    Article  MathSciNet  Google Scholar 

  12. Doerr, B., Doerr, C., Lengler, J.: Self-adjusting mutation rates with provably optimal success rules. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2019). ACM (2019)

    Google Scholar 

  13. Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k outperforms standard bit mutation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 824–834. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_77

    Chapter  Google Scholar 

  14. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2016), pp. 1123–1130. ACM (2016)

    Google Scholar 

  15. Doerr, B., Gießen, C., Witt, C., Yang, J.: The \((1+\lambda )\) evolutionary algorithm with self-adjusting mutation rate. Algorithmica 81, 593–631 (2019). https://doi.org/10.1007/s00453-018-0502-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Doerr, C., Wagner, M.: On the effectiveness of simple success-based parameter selection mechanisms for two classical discrete black-box optimization benchmark problems. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 943–950. ACM (2018)

    Google Scholar 

  17. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 88, 106027 (2020)

    Article  Google Scholar 

  18. Doerr, C., Ye, F., van Rijn, S., Wang, H., Bäck, T.: Towards a theory-guided benchmarking suite for discrete black-box optimization heuristics: profiling (1 + \(\lambda \)) EA variants on onemax and leadingones. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 951–958. ACM (2018)

    Google Scholar 

  19. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  20. Eiben, A.E., Horvath, M., Kowalczyk, W., Schut, M.C.: Reinforcement learning for online control of evolutionary algorithms. In: Proceedings of the 4th International Conference on Engineering Self-Organising Systems, pp. 151–160 (2006)

    Google Scholar 

  21. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

    Article  Google Scholar 

  22. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: Proceedings of International Conference on Machine Learning (ICML 2018), pp. 1436–1445 (2018)

    Google Scholar 

  23. Fialho, Á., Costa, L.D., Schoenauer, M., Sebag, M.: Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60, 25–64 (2010)

    Article  MathSciNet  Google Scholar 

  24. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  25. Karafotias, G., Eiben, Á.E., Hoogendoorn, M.: Generic parameter control with reinforcement learning. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2014), pp. 1319–1326 (2014)

    Google Scholar 

  26. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Evaluating reward definitions for parameter control. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 667–680. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16549-3_54

    Chapter  Google Scholar 

  27. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19, 167–187 (2015)

    Article  Google Scholar 

  28. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms - a comparative review. Nat. Comput. 3, 77–112 (2004)

    Article  MathSciNet  Google Scholar 

  29. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of Foundations of Genetic Algorithms (FOGA 2011), pp. 181–192. ACM (2011)

    Google Scholar 

  30. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. arXiv preprint arXiv:1603.06560 (2016)

  31. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69432-8

    Book  MATH  Google Scholar 

  32. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Stützle, T., Birattari, M.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  33. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of Genetic and Evolutionary Conference (GECCO 2011), pp. 829–836. ACM (2011)

    Google Scholar 

  34. Müller, S.D., Schraudolph, N.N., Koumoutsakos, P.D.: Step size adaptation in evolution strategies using reinforcement learning. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 151–156 (2002)

    Google Scholar 

  35. Pushak, Y., Hoos, H.: Algorithm configuration landscapes: more benign than expected? In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 271–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_22

    Chapter  Google Scholar 

  36. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Fromman-Holzboorg Verlag, Stuttgart (1973)

    Google Scholar 

  37. Rodionova, A., Antonov, K., Buzdalova, A., Doerr, C.: Offspring population size matters when comparing evolutionary algorithms with self-adjusting mutation rates. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 855–863. ACM (2019)

    Google Scholar 

  38. Rost, A., Petrova, I., Buzdalova, A.: Adaptive parameter selection in evolutionary algorithms by reinforcement learning with dynamic discretization of parameter range. In: Proceedings of Genetic and Evolutionary Computation Conference Companion (GECCO 2016), pp. 141–142 (2016)

    Google Scholar 

  39. Schumer, M.A., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom. Control 13, 270–276 (1968)

    Article  Google Scholar 

  40. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  41. Vérel, S.: Apport à l’analyse des paysages de fitness pour l’optimisation mono-objective et multiobjective: Science des systèmes complexes pour l’optimisation par méthodes stochastiques. (Contributions to fitness landscapes analysis for single- and multi-objective optimization: Science of complex systems for optimization with stochastic methods) (2016). https://tel.archives-ouvertes.fr/tel-01425127

  42. Wang, H., Emmerich, M., Bäck, T.: Cooling strategies for the moment-generating function in Bayesian global optimization. In: Proceedings of Congress on Evolutionary Computation (CEC 2018), pp. 1–8 (2018)

    Google Scholar 

  43. Weise, T., Wu, Z.: Difficult features of combinatorial optimization problems and the tunable w-model benchmark problem for simulating them. In: Proceeding of Genetic and Evolutionary Computation Conference Companion (GECCO 2018), pp. 1769–1776 (2018)

    Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR and CNRS, project number 20-51-15009, by the Paris Ile-de-France Region, and by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Doerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buzdalova, A., Doerr, C., Rodionova, A. (2020). Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation Rate of an Evolutionary Algorithm. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics