Skip to main content

Artificial Intelligence in Public Health

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

The potential contribution of artificial intelligence to public health is made up, in a sense, of its many specific contributions to each of the medical disciplines, in that each individual contribution will help to improve the health of the population by making more efficient use of the resources of the healthcare system and improving individual health. There are, however, a few specific areas of public health and social medicine in which AI could bring about an evolution, or even a revolution. This may be the case for precision public health, which draws on data that is both more varied in nature, such as behavioral data from connected objects, and more precise in temporal and spatial resolution. Public health uses aggregate, often macroscopic, data to make health policy decisions. Such indicators are imperfect; they can be inconsistent or misleading and are often most useful in retrospect, rather than at the desired moment. Evidence-based policy would appear to be more legitimate and robust. AI could also change the way public health systems are organized at various levels. Learning healthcare systems, for example, are designed to adapt more or less autonomously to changing health needs. In any case, the challenges of effectively using AI will arise in public health as elsewhere, and they may even be exacerbated or intensified by the well-known and unresolved tension between individual preferences and collective preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wade DT, Halligan PW. The biopsychosocial model of illness: a model whose time has come. Clin Rehabil. 2017;31(8):995–1004. https://doi.org/10.1177/0269215517709890.

    Article  PubMed  Google Scholar 

  2. Fassin D. Santé Publique. In: Lecourt D, editor. Dictionnaire de la pensée médicale. Paris: PUF; 2004. p. 1014–8.

    Google Scholar 

  3. Dubé E, Laberge C, Guay M, Bramadat P, Roy R, Bettinger J. Vaccine hesitancy: an overview. Hum Vaccin Immunother. 2013;9(8):1763–73. https://doi.org/10.4161/hv.24657.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ward JK, Cafiero F, Fretigny R, Colgrove J, Seror V. France’s citizen consultation on vaccination and the challenges of participatory democracy in health. Soc Sci Med. 2019;220:73–80. https://doi.org/10.1016/j.socscimed.2018.10.032.

    Article  PubMed  Google Scholar 

  5. Lee PR. The future of social medicine. J Urban Health. 1999;76(2):229–36. https://doi.org/10.1007/BF02344678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawachi I, Subramanian SV. Social epidemiology for the 21st century. Soc Sci Med. 2018;196:240–5. https://doi.org/10.1016/j.socscimed.2017.10.034.

    Article  PubMed  Google Scholar 

  7. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8:184–7.

    Article  Google Scholar 

  8. Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak. 2019;19(1):211. https://doi.org/10.1186/s12911-019-0918-5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lin E, Lin CH, Lane HY. Precision psychiatry applications with pharmacogenomics: artificial intelligence and machine learning approaches. Int J Mol Sci. 2020;21(3):969. https://doi.org/10.3390/ijms21030969.

    Article  PubMed Central  Google Scholar 

  10. Lillie EO, Patay B, Diamant J, et al. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Pers Med. 2011;8(2):161–73. https://doi.org/10.2217/pme.11.7.

    Article  Google Scholar 

  11. Seeking precision in public health. Nat Med. 2019;25(8):1177. https://doi.org/10.1038/s41591-019-0556-6

  12. Horton R. Offline: in defence of precision public health. Lancet. 2018;392(10157):1504. https://doi.org/10.1016/S0140-6736(18)32741-7.

    Article  PubMed  Google Scholar 

  13. Godlee F. Evidence based medicine: flawed system but still the best we’ve got. BMJ. 2014;348:g440.

    Article  Google Scholar 

  14. Kiran T. Toward evidence-based policy. CMAJ. 2016;188(15):1065–6. https://doi.org/10.1503/cmaj.160692.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Latour B, Woolgar S. Laboratory life: the social construction of scientific facts. Los Angeles: Sage; 1979.

    Google Scholar 

  16. Anderson C. The end of theory: the data deluge makes the scientific method obsolete. Wired, 2008. https://www.wired.com/2008/06/pb-theory

  17. Rice MJ, Stalling J, Monasterio A. Psychiatric-mental health nursing: data-driven policy platform for a psychiatric mental health care workforce. J Am Psychiatr Nurses Assoc. 2019;25(1):27–37. https://doi.org/10.1177/1078390318808368.

    Article  PubMed  Google Scholar 

  18. Kamel Boulos MN, Peng G, VoPham T. An overview of GeoAI applications in health and healthcare. Int J Health Geogr. 2019;18(1):7. https://doi.org/10.1186/s12942-019-0171-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang P, MacKinlay A, Yepes AJ. Syndromic surveillance using generic medical entities on Twitter. In: Proceedings of Australasian language technology association workshop, 2016. p. 35–44.

    Google Scholar 

  20. Hamon T, Gagnayre R. Improving knowledge of patient skills thanks to automatic analysis of online discussions. Patient Educ Couns. 2013;92(2):197–204. https://doi.org/10.1016/j.pec.2013.05.012.

    Article  PubMed  Google Scholar 

  21. Chiolero A, Buckeridge D. Glossary for public health surveillance in the age of data science. J Epidemiol Community Health. 2020;74:612–6.

    PubMed  Google Scholar 

  22. Kandula S, Shaman J. Reappraising the utility of Google Flu Trends. PLoS Comput Biol. 2019;15(8):e1007258. https://doi.org/10.1371/journal.pcbi.1007258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wongvibulsin S, Zeger SL. Enabling individualised health in learning healthcare systems. BMJ Evid Based Med. 2020;25(4):125–9. https://doi.org/10.1136/bmjebm-2019-111190.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ho CWL, Ali J, Caals K. Ensuring trustworthy use of artificial intelligence and big data analytics in health insurance. Bull World Health Organ. 2020;98(4):263–9. https://doi.org/10.2471/BLT.19.234732.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cole SR, Hudgens MG, Brookhart MA, Westreich D. Risk. Am J Epidemiol. 2015;181:246–50. https://doi.org/10.1093/aje/kwv001.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lefèvre T, Lepresle A, Chariot P. Detangling complex relationships in forensic data: principles and use of causal networks and their application to clinical forensic science. Int J Legal Med. 2015;129(5):1163–72. https://doi.org/10.1007/s00414-015-1164-8.

    Article  PubMed  Google Scholar 

  27. Marmot M. Fair society, healthy lives: the Marmot Review: strategic review of health inequalities in England post-2010. 2010. ISBN 9780956487001.

    Google Scholar 

  28. Bengio Y. https://yoshuabengio.org/fr/2020/03/25/depistage-pair-a-pair-de-la-covid-19-base-sur-lia/

  29. Kröger M, Schlickeiser R. Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A: time-independent reproduction factor. J Phys A. 2020. https://doi.org/10.1088/1751-8121/abc65d.

  30. Mozour P, Zhong R, Krolik A. In coronavirus fight, China gives citizens a color code, with red flags. The New York Times, 2020. https://www.nytimes.com/2020/03/01/business/china-coronavirus-surveillance.html

  31. Lee Y. Taiwan’s new ‘electronic fence’ for quarantines leads wave of virus monitoring. Reuters, 2020. https://www.reuters.com/article/us-health-coronavirus-taiwan-surveillanc/taiwans-new-electronic-fence-for-quarantines-leads-wave-of-virus-monitoring-idUSKBN2170SK

  32. Bach J. The red and the black: China’s social credit experiment as a total test environment. Br J Sociol. 2020;71(3):489–502. https://doi.org/10.1111/1468-4446.12748.

    Article  PubMed  Google Scholar 

  33. Tran TNT, Felfernig A, Trattner C, et al. Recommender systems in the healthcare domain: state-of-the-art and research issues. J Intell Inf Syst. 2020. https://doi.org/10.1007/s10844-020-00633-6.

  34. Manganello J, Gerstner G, Pergolino K, Graham Y, Falisi A, Strogatz D. The relationship of health literacy with use of digital technology for health information: implications for public health practice. J Public Health Manag Pract. 2017;23(4):380–7. https://doi.org/10.1097/PHH.0000000000000366.

    Article  PubMed  Google Scholar 

  35. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53. https://doi.org/10.1126/science.aax2342.

    Article  CAS  Google Scholar 

  36. Unberath P, Prokosch HU, Gründner J, Erpenbeck M, Maier C, Christoph J. EHR-independent predictive decision support architecture based on OMOP. Appl Clin Inform. 2020;11(3):399–404. https://doi.org/10.1055/s-0040-1710393.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chiang J, Kumar A, Morales D, Saini D, Hom J, Shieh L, Musen M, Goldstein MK, Chen JH. Physician usage and acceptance of a machine learning recommender system for simulated clinical order entry. AMIA Jt Summits Transl Sci Proc. 2020;2020:89–97.

    PubMed  PubMed Central  Google Scholar 

  38. Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Precise4Q consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20(1):310. https://doi.org/10.1186/s12911-020-01332-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lefèvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lefèvre, T., Guez, S. (2021). Artificial Intelligence in Public Health. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics