Skip to main content

Changeable Closed-Loop Manufacturing Systems: A Case Study of Challenges in Product Take-Back

  • Conference paper
  • First Online:
Advances in Production Management Systems. Towards Smart and Digital Manufacturing (APMS 2020)

Abstract

Product take-back programs are becoming increasingly popular and widespread driven by continuous focus on sustainability and circular economy. As a result, manufacturing systems need to be designed to handle not only disassembly, but also reprocessing of materials, re-assembly, and remanufacturing in a cost-efficient way. Compared to traditional manufacturing, this involves higher need for changeability due to higher uncertainty e.g. in terms of timing, quantity, and quality of received items to handle, and in particular due to significant variety in returned items. Therefore, the aim of this paper is to provide empirical insight on how changeability and reconfigurability can be applied to meet challenges in development of closed-loop manufacturing systems for product take-back.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seitz, M.A., Peattie, K.: Meeting the closed-loop challenge: the case of remanufacturing. Calif. Manag. Rev. 46(2), 74–89 (2004)

    Article  Google Scholar 

  2. Subramoniam, R., Huisingh, D., Chinnam, R.B.: Remanufacturing for the automotive aftermarket-strategic factors: literature review and future research needs. J. Clean. Prod. 17(13), 1163–1174 (2009)

    Article  Google Scholar 

  3. Tolio, T., Bernard, A., Colledani, M., et al.: Design, management and control of demanufacturing and remanufacturing systems. CIRP Ann. 66(2), 585–609 (2017)

    Article  Google Scholar 

  4. Golinska, P., Fertsch, M., Gómez, J.M., Oleskow, J.: The concept of closed-loop supply chain integration through agents-based system. In: Gómez, J.M., Sonnenschein, M., Müller, M., Welsch, H., Rautenstrauch, C. (eds.) Information Technologies in Environmental Engineering. Environmental Science and Engineering (Environmental Engineering), pp. 189–202. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71335-7_20

  5. Kondoh, S., Nishikiori, Y., Umeda, Y.: A closed-loop manufacturing system focusing on reuse of components, pp. 453–457. IEEE (2005)

    Google Scholar 

  6. Bockholt, M.T., Kristensen, J.H., Wæhrens, B.V., et al.: Learning from the nature: enabling the transition towards circular economy through biomimicry, pp. 870–875. IEEE (2019)

    Google Scholar 

  7. Matsumoto, M., Yang, S., Martinsen, K., et al.: Trends and research challenges in remanufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 1(3), 129–142 (2016)

    Article  Google Scholar 

  8. Dittrich, M., Schleich, B., Clausmeyer, T., et al.: Shifting value stream patterns along the product lifecycle with digital twins. Procedia CIRP 86, 3–11 (2019)

    Article  Google Scholar 

  9. Koren, Y.: The rapid responsiveness of RMS. Int. J. Prod. Res. 51(23–24), 6817–6827 (2013)

    Article  Google Scholar 

  10. ElMaraghy, H., AlGeddawy, T., Azab, A., ElMaraghy, W.: Change in manufacturing – research and industrial challenges. In: ElMaraghy, H. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 2–9. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23860-4_1

  11. Bi, Z.: Revisiting system paradigms from the viewpoint of manufacturing sustainability. Sustainability 3(9), 1323–1340 (2011)

    Article  Google Scholar 

  12. Andersen, A., Brunoe, T.D., Nielsen, K., et al.: Towards a generic design method for reconfigurable manufacturing systems - analysis and synthesis of current design methods and evaluation of supportive tools. J. Manuf. Syst. 42, 179–195 (2017)

    Article  Google Scholar 

  13. Andersen, A.-L., Brunoe, T.D., Nielsen, K.: Reconfigurable manufacturing on multiple levels: literature review and research directions. In: Umeda, S., Nakano, M., Mizuyama, H., Hibino, H., Kiritsis, D., von Cieminski, G. (eds.) APMS 2015. IAICT, vol. 459, pp. 266–273. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22756-6_33

    Chapter  Google Scholar 

  14. Koren, Y., Gu, X., Badurdeen, F., et al.: Sustainable living factories for next generation manufacturing. Procedia Manuf. 21, 26–36 (2018)

    Article  Google Scholar 

  15. Singh, A., Gupta, S., Asjad, M., et al.: Reconfigurable manufacturing systems: journey and the road ahead. Int. J. Syst. Assur. Eng. Mgt. 8(2), 1849–1857 (2017)

    Article  Google Scholar 

  16. Brunø, T.D., Andersen, A., Nielsen, K.: Changeable manufacturing systems supporting circular supply chains, pp. 1423–1428 (2019)

    Google Scholar 

  17. Koren, Y.: General RMS characteristics. Comparison with dedicated and flexible systems. In: Dashchenko, A.I. (ed.) Reconfigurable Manufacturing Systems and Transformable Factories, pp. 27–45. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29397-3_3

  18. Koren, Y., Heisel, U., Jovane, F., et al.: Reconfigurable manufacturing systems. CIRP Ann.-Manuf. Technol. 48(2), 527–540 (1999)

    Article  Google Scholar 

  19. Koren, Y., Gu, X., Badurdeen, F., et al.: Sustainable living factories for next generation manufacturing. Procedia Manuf. 21, 26 (2018)

    Article  Google Scholar 

  20. Garbie, I.H.: DFMER: design for manufacturing enterprise reconfiguration considering globalisation issues. Int. J. Ind. Syst. Eng. 14(4), 484–516 (2013)

    Google Scholar 

  21. Garbie, I.H.: DFSME: design for sustainable manufacturing enterprises (an economic viewpoint). Int. J. Prod. Res. 51(2), 479–503 (2013)

    Article  Google Scholar 

  22. Barwood, M., Li, J., Pringle, T., et al.: Utilisation of reconfigurable recycling systems for improved material recovery from E-waste. Procedia CIRP 29, 746–751 (2015)

    Article  Google Scholar 

  23. Huang, A., Badurdeen, F., Jawahir, I.S.: Towards developing sustainable reconfigurable manufacturing systems. Procedia Manuf. 17, 1136–1143 (2018)

    Article  Google Scholar 

  24. Mesa, J.A., Esparragoza, I., Maury, H.: Modular architecture principles MAPs: a key factor in the development of sustainable open architecture products. Int. J. Sustain. Eng. 13(2), 1–15 (2019)

    Google Scholar 

  25. Khan, M.A., Kalverkamp, M., Wuest, T.: Cascade utilization during the end-of-life of product service systems: synergies and challenges. In: Pehlken, A., Kalverkamp, M., Wittstock, R. (eds.) Cascade Use in Technologies 2018, pp. 1–7. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-57886-5_1

  26. Fan, X., Zhang, Z., Jin, X., et al.: Technology of reconfigurable multi-process combined machining for remanufacturing, pp. 1–4. IEEE (2010)

    Google Scholar 

  27. Bi, Z., Pomalaza-Ráez, C., Singh, Z., et al.: Reconfiguring machines to achieve system adaptability and sustainability: a practical case study. Proc. Inst. Mech. Eng. Pt. B: J. Eng. Manuf. 228(12), 1676–1688 (2014)

    Article  Google Scholar 

  28. Peukert, B., Benecke, S., Clavell, J., et al.: Addressing sustainability and flexibility in manufacturing via smart modular machine tool frames to support sustainable value creation. Procedia CIRP 29, 514–519 (2015)

    Article  Google Scholar 

  29. Touzout, F.A., Benyoucef, L.: Sustainable multi-unit process plan generation in a reconfigurable manufacturing environment: a comparative study of three hybrid-meta-heuristics, pp. 661–668. IEEE (2018)

    Google Scholar 

  30. Ghanei, S., AlGeddawy, T.: A new model for sustainable changeability and production planning. Procedia CIRP 100(57), 522–526 (2016)

    Article  Google Scholar 

  31. Khezri, A., Benderbal, H.H., Benyoucef, L.: A sustainable reconfigurable manufacturing system designing with focus on environmental hazardous wastes, pp. 317–324. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Louise Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bockholt, M.T. et al. (2020). Changeable Closed-Loop Manufacturing Systems: A Case Study of Challenges in Product Take-Back. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Towards Smart and Digital Manufacturing. APMS 2020. IFIP Advances in Information and Communication Technology, vol 592. Springer, Cham. https://doi.org/10.1007/978-3-030-57997-5_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57997-5_87

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57996-8

  • Online ISBN: 978-3-030-57997-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics