Skip to main content

Quantum Aspects of Materials II

  • Chapter
  • First Online:
Advanced Quantum Mechanics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2111 Accesses

Abstract

We have already seen in Chap. 10 that basic properties of electron states in materials are determined by quantum effects. This impacts all properties of materials, including their mechanical properties, electrical and thermal conductivities, and optical properties. Examples of the inherently quantum mechanical nature of electromagnetic properties of materials are provided by the role of virtual intermediate states in the polarizability tensor in Sect. 15.3, and the importance of exchange interactions for magnetism in materials, as discussed in Sect. 17.7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumes that we use Coulomb gauge for the electromagnetic fields, see Chap. 18. Otherwise, we would have to use exchange of virtual longitudinal photons for the description of the dominant electromagnetic interaction between non-relativistic charged particles, which would be clumsy. Furthermore, strictly speaking, the assertion that the dominant interaction between non-relativistic nuclei is due to their Coulomb repulsion assumes that the nuclei are at least 1 fm apart. Otherwise they would be dominated by the nuclear force. Sections 23.2 and 23.4 contain explicit demonstrations that electromagnetic interactions of non-relativistic particles in Coulomb gauge are dominated by the Coulomb potential.

  2. 2.

    We would have to be more careful if we would also discuss expectation values, because exchange integrals appear in the expectation values of potential terms, see Sect. 17.7.

  3. 3.

    We have seen the corresponding one-dimensional equations in (10.1)–(10.5). However, when comparing Eqs. (20.68) and (20.69) with (10.1)–(10.5) please keep in mind that the continuous variables κi play the role of x there, while the discrete lattice sites  = niai compare to the discrete momenta 2πna in Eqs. (10.1)–(10.5), see also (10.19).

  4. 4.

    More comprehensive textbook discussions can be found in references [23, 59].

  5. 5.

    Note that we use the symbol \(\tilde {\boldsymbol {Q}}^+\) both for the hermitian adjoint row vector and for the complex conjugate column vector, since the position in a scalar product or tensor product makes it clear which of the two versions is meant. This is in agreement with the common convention to not explicitly mark the transposed row vectors as \(\tilde {\boldsymbol {Q}}^T\), see e.g. Eq. (20.185).

  6. 6.

    You also have to use that the matrix \( \underline {\tilde {\Omega }^2}(\boldsymbol {k})\) has a positive semi-definite square root \( \underline {\tilde {\Omega }}(\boldsymbol {k})\), see Problem 20.3. Therefore we also have e.g.

    $$\displaystyle \begin{aligned} \sum_{A,B}\hat{\boldsymbol{Q}}_{I,A}(\boldsymbol{k})\cdot \underline{\tilde{\Omega}^2}_{A,B}(-\,\boldsymbol{k})\cdot \hat{\boldsymbol{Q}}_{J,B}(-\,\boldsymbol{k}) =\omega_I(\boldsymbol{k})\omega_J(-\,\boldsymbol{k})\sum_{A} \hat{\boldsymbol{Q}}_{I,A}(\boldsymbol{k})\hat{\boldsymbol{Q}}_{J,A}(-\,\boldsymbol{k}). \end{aligned} $$
    (20.200)
  7. 7.

    The Hamiltonian H0 + Heq is often addressed as the second quantized Hamiltonian of the electron-phonon system, but it is actually a mixed (“1.5th”) level of quantization, because the electrons are treated at second quantized level, but the phonons correspond to a first quantized description of the vibrations of the ion cores.

References

  1. M. Abramowiz, I.A. Stegun (eds.), Handbook of Mathematical Functions, 10th printing (Wiley, New York, 1972)

    Google Scholar 

  2. I. Affleck, J.B. Marston, Phys. Rev. B 37, 3774 (1988)

    Article  ADS  Google Scholar 

  3. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982)

    Article  ADS  Google Scholar 

  4. M. Aubert, N. Bessis, G. Bessis, Phys. Rev. A 10, 51 (1974)

    Article  ADS  Google Scholar 

  5. J. Bardeen, D. Pines, Phys. Rev. 99, 1140 (1955)

    Article  ADS  Google Scholar 

  6. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Born, J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)

    Article  Google Scholar 

  8. Ø. Burrau, Naturwissenschaften 15, 16 (1927)

    Article  ADS  Google Scholar 

  9. Ø. Burrau, K. Danske Vidensk. Selsk., Mat.-fys. Medd. 7(14) (1927)

    Google Scholar 

  10. J. Callaway, Quantum Theory of the Solid State (Academic Press, Boston, 1991)

    Google Scholar 

  11. M.M. Cassar, G.W.F. Drake, J. Phys. B 37, 2485 (2004)

    Article  ADS  Google Scholar 

  12. H. Fröhlich, Phys. Rev. 79, 845 (1950)

    Article  ADS  Google Scholar 

  13. P. Fulde, Electron Correlations in Molecules and Solids, 2nd edn. (Springer, Berlin, 1993)

    Book  Google Scholar 

  14. B. Grémaud, D. Delande, N. Billy, J. Phys. B 31, 383 (1998)

    Article  ADS  Google Scholar 

  15. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

    Article  ADS  Google Scholar 

  16. W. Heisenberg, Z. Phys. 39, 499 (1926)

    Article  ADS  Google Scholar 

  17. W. Heitler, F. London, Z. Phys. 44, 455 (1927)

    Article  ADS  Google Scholar 

  18. J.E. Hirsch, Phys. Rev. B 31, 4403 (1985)

    Article  ADS  Google Scholar 

  19. J. Hubbard, Proc. R. Soc. Lon. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  20. G. Hunter, H.O. Pritchard, J. Chem. Phys. 46, 2146 (1967)

    Article  ADS  Google Scholar 

  21. E.A. Hylleraas, Z. Phys. 71, 739 (1931)

    Article  ADS  Google Scholar 

  22. H. Ibach, H. Lüth, Solid State Physics—An introduction to Principles of Materials Science, 3rd edn. (Springer, Berlin, 2003)

    Google Scholar 

  23. G. Jaffé, Z. Phys. 87, 535 (1934)

    Article  ADS  Google Scholar 

  24. T. Kato, Commun. Pure Appl. Math. 10, 151 (1957)

    Article  Google Scholar 

  25. C. Kittel, Quantum Theory of Solids, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  26. H. Li, J. Wu, B.-L. Zhou, J.-M. Zhu, Z.-C. Yan, Phys. Rev. A 75, 012504 (2007)

    Article  ADS  Google Scholar 

  27. O. Madelung, Introduction to Solid-State Theory (Springer, Berlin, 1978)

    Book  Google Scholar 

  28. Á. Nagy, C. Amovilli, Phys. Rev. A 82, 042510 (2010)

    Article  ADS  Google Scholar 

  29. R.T. Pack, W.B. Brown, J. Chem. Phys. 45, 556 (1966)

    Article  ADS  Google Scholar 

  30. T.C. Scott, M. Aubert-Frécon, J. Grotendorf, Chem. Phys. 324, 323 (2006)

    Article  Google Scholar 

  31. J.C. Slater, Quantum Theory of Molecules and Solids, vol. 1 (McGraw-Hill, New York, 1963)

    Google Scholar 

  32. E. Teller, Z. Phys. 61, 458 (1930)

    Article  ADS  Google Scholar 

  33. Y.M. Vilk, A.-M.S. Tremblay, J. Phys. I 7, 1309 (1997)

    Google Scholar 

  34. A.H. Wilson, Proc. R. Soc. Lond. A 118, 617, 635 (1928)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dick, R. (2020). Quantum Aspects of Materials II. In: Advanced Quantum Mechanics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-57870-1_20

Download citation

Publish with us

Policies and ethics