Skip to main content

Restricting the Maximum Number of Actions for Decision Support Under Uncertainty

  • Conference paper
  • First Online:
Ontologies and Concepts in Mind and Machine (ICCS 2020)

Abstract

Standard approaches for decision support are computing a maximum expected utility or solving a partially observable Markov decision process. To the best of our knowledge, in both approaches, external restrictions are not accounted for. However, restrictions to actions often exists, for example in the form of limited resources. We demonstrate that restrictions to actions can lead to a combinatorial explosion if performed on a ground level, making ground inference intractable. Therefore, we extend a formalism that solves a lifted maximum expected utility problem to handle restricted actions. To test its relevance, we apply the new formalism to enterprise architecture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)

    Article  MathSciNet  Google Scholar 

  2. Aoki, M.: Optimal control of partially observable Markovian systems. J. Franklin Inst. 280(5), 367–386 (1965)

    Article  MathSciNet  Google Scholar 

  3. Apsel, U., Brafman, R.I.: Extended lifted inference with joint formulas. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 11–18. AUAI Press (2011)

    Google Scholar 

  4. Åström, K.J.: Optimal control of Markov processes with incomplete state information. J. Math. Anal. Appl. 10(1), 174–205 (1965)

    Article  MathSciNet  Google Scholar 

  5. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. pp. 33–42. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  6. Braun, T., Möller, R.: Lifted iunction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46073-4_3

    Chapter  Google Scholar 

  7. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted probabilistic inference by first-order knowledge compilation. In: IJCAI11 Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 2178–2185. AAAI Press/International Joint Conferences on Artificial Intelligence (2011)

    Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  Google Scholar 

  9. Gehrke, M., Braun, T., Möller, R., Waschkau, A., Strumann, C., Steinhäuser, J.: Lifted maximum expected utility. In: Koch, F., et al. (eds.) AIH 2018. LNCS (LNAI), vol. 11326, pp. 131–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12738-1_10

    Chapter  Google Scholar 

  10. Gogate, V., Domingos, P.M.: Probabilistic Theorem Proving. In: UAI 2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 14–17 July 2011, pp. 256–265. AUAI Press (2011)

    Google Scholar 

  11. Harris, T., Ross, F.: Fundamentals of a method for evaluating rail net capacities. Technical report, Rand Corp, Santa Monica, CA (1955)

    Google Scholar 

  12. Johnson, P., Lagerström, R., Närman, P., Simonsson, M.: Enterprise architecture analysis with extended influence diagrams. Inf. Syst. Front. 9, 163–180 (2007)

    Article  Google Scholar 

  13. Joshi, S., Kersting, K., Khardon, R.: Generalized first order decision diagrams for first order markov decision processes. In: IJCAI09 Proceedings of the 21st International Joint Conference on Artifical Intelligence, pp. 1916–1921. Morgan Kaufmann Publishers Inc. (2009)

    Google Scholar 

  14. McCarthy, J.: Situations, actions, and causal laws. Stanford Univ CA Dept of Computer Science, Technical report (1963)

    Google Scholar 

  15. Morgenstern, L.: Knowledge preconditions for actions and plans. In: Readings in Distributed Artificial Intelligence, pp. 192–199. Elsevier (1988)

    Google Scholar 

  16. Nath, A., Domingos, P.: A language for relational decision theory. In: International Workshop on Statistical Relational Learning (2009)

    Google Scholar 

  17. Nath, A., Domingos, P.: Efficient lifting for online probabilistic inference. In: Proceedings of the 6th AAAI Conference on Statistical Relational Artificial Intelligence, AAAIWS 2010-06, pp. 1193–1198. AAAI Press (2010)

    Google Scholar 

  18. Nath, A., Domingos, P.M.: Efficient belief propagation for utility maximization and repeated inference. In: AAAI10 Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 1187–1192. AAAI Press (2010)

    Google Scholar 

  19. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  20. Niepert, M., Van den Broeck, G.: Tractability through exchangeability: a new perspective on efficient probabilistic inference. In: AAAI14 Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2467–2475. AAAI Press (2014)

    Google Scholar 

  21. Poole, D.: First-order probabilistic inference. In: IJCAI03 Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 985–991. Morgan Kaufmann Publishers Inc. (2003)

    Google Scholar 

  22. de Salvo Braz, R., Amir, E., Roth, D.: MPE and partial inversion in lifted probabilistic variable elimination. In: AAAI, pp. 1123–1130. AAAI Press (2006)

    Google Scholar 

  23. Sanner, S., Boutilier, C.: Approximate solution techniques for factored first-order MDPs. In: 17th International Conference on Automated Planning and Scheduling, pp. 288–295. AAAI Press (2007)

    Google Scholar 

  24. Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs. In: AAAI10 Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 1140–1146. AAAI Press (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gehrke, M., Braun, T., Polovina, S. (2020). Restricting the Maximum Number of Actions for Decision Support Under Uncertainty. In: Alam, M., Braun, T., Yun, B. (eds) Ontologies and Concepts in Mind and Machine. ICCS 2020. Lecture Notes in Computer Science(), vol 12277. Springer, Cham. https://doi.org/10.1007/978-3-030-57855-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57855-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57854-1

  • Online ISBN: 978-3-030-57855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics