Skip to main content

The Effects of B-Vitamins, Dietary Bioactive Agents and Functional Foods on Hyperhomocysteinemia

  • Chapter
  • First Online:
Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia

Abstract

Hyperhomocysteinemia is a popular status among old individuals. Lately, there is mounting evidence of a positive correlation between hyperhomocysteinemia and geriatric disorders specially cardiovascular diseases. Recently, modern functional food techniques express promising impact in lowering homocysteine related coronary artery complications through various vitamins supplementation contained diet. Functional foods encompass a variety of bioactive agents that scientifically and experimentally proved a powerful influence not only on an individual’s health but also on the state of mind, and physical performance as well. Accordingly, this chapter elucidated various types of bioactive agents like vitamins, amino acids, and even cofactor that are chiefly in charge of homocysteine metabolism. Most of these implicated bioactive ingredients are demonstrated along with their structure, function, bioavailability, sources, metabolism, and nutritional value displaying their role in regulating homocysteine level. To conclude, lowering homocysteine is a major public health problem to take care of. Also, countless researches proved that a strategy for lowering homocysteine through supplementation of vitamins contained food might stop or even slow the progress of old age-related cardiovascular problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elmadfa I, Singer I (2009) Vitamin B-12 and homocysteine status among vegetarians: a global perspective. Am J Clin Nutr 89(5):1693S–1698S

    Article  CAS  PubMed  Google Scholar 

  2. LB B (2007) In: Zempleni J et al (eds) Folic acid, in handbook of vitamins. CRC Press, Boca Raton, pp 386–412

    Google Scholar 

  3. Barak AJ, Beckenhauer HC, Tuma DJ (1996) Betaine, ethanol, and the liver: a review. Alcohol 13(4):395–398

    Article  CAS  PubMed  Google Scholar 

  4. Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1(5):228–237

    Article  CAS  PubMed  Google Scholar 

  5. Miller AL, GS K (1996) Methionine and homocysteine metabolism and the nutritional prevention of certain birth defects and complications of pregnancy. Altern Med Rev 1(4):220–235

    Google Scholar 

  6. Hoffbrand AV, Weir DG (2001) The history of folic acid. Br J Haematol 113(3):579–589

    Article  CAS  PubMed  Google Scholar 

  7. Weinstein SJ et al (2003) Null association between prostate cancer and serum folate, vitamin B(6), vitamin B(12), and homocysteine. Cancer Epidemiol Biomark Prev 12(11 Pt 1):1271–1272

    CAS  Google Scholar 

  8. Medicine IO (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. The National Academies Press, Washington, DC, p 592

    Google Scholar 

  9. Angier RB et al (2644) Synthesis of a compound identical with the L. Casei factor isolated from liver. Science 1945(102):227–228

    Google Scholar 

  10. Mitchell HK, Snell EE, Williams RJ (1988) Journal of the American Chemical Society, Vol. 63, 1941: The concentration of “folic acid” by Herschel K. Mitchell, Esmond E. Snell, and Roger J. Williams. Nutr Rev. 46(9): 324–325

    Google Scholar 

  11. Food and H.H.S (2016) Drug administration, food labeling: revision of the nutrition and supplement facts labels. Final rule. Fed Regist 81(103):33741–33999

    Google Scholar 

  12. Carmel R (2005) Folic acid. In: Shils M, Ross A, Caballero B, Cousins RJ (eds) Modern nutrition in health and disease. Lippincott Williams & Wilkins, Baltimore, pp 470–481

    Google Scholar 

  13. Mangoni AA, Jackson SH (2002) Homocysteine and cardiovascular disease: current evidence and future prospects. Am J Med 112(7):556–565

    Article  CAS  PubMed  Google Scholar 

  14. Botez MI (1976) Folate deficiency and neurological disorders in adults. Med Hypotheses 2(4):135–140

    Article  CAS  PubMed  Google Scholar 

  15. in Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (1998) Washington (DC)

    Google Scholar 

  16. Yetley EA et al (2011) Biomarkers of folate status in NHANES: a roundtable summary. Am J Clin Nutr 94(1):303S–312S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duthie SJ (1999) Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull 55(3):578–592

    Article  CAS  PubMed  Google Scholar 

  18. Reidy JA (1988) Role of deoxyuridine incorporation and DNA repair in the expression of human chromosomal fragile sites. Mutat Res 200(1–2):215–220

    Article  CAS  PubMed  Google Scholar 

  19. Lee H et al (2004) Effects of dietary folic acid supplementation on cerebrovascular endothelial dysfunction in rats with induced hyperhomocysteinemia. Brain Res 996(2):139–147

    Article  CAS  PubMed  Google Scholar 

  20. Wills L (1931) Treatment of “pernicious Anaemia of pregnancy” and “tropical Anaemia”. Br Med J 1(3676):1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Homocysteine Lowering Trialists C (2005) Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82(4):806–812

    Article  Google Scholar 

  22. Glade MJ (1999) Workshop on folate, B12, and choline. Sponsored by the panel on folate and other B vitamins of the standing committee on the scientific evaluation of dietary reference intakes, food and nutrition board, Institute of Medicine, Washington, D.C., March 3-4, 1997. Nutrition 15(1):92–96

    Article  CAS  PubMed  Google Scholar 

  23. Carmel R (2008) How I treat cobalamin (vitamin B12) deficiency. Blood 112(6):2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rizzo G, Laganà AS (2020) A review of vitamin B12:105–129

    Google Scholar 

  25. Green R (2007) Vitamin B12. In: Handbook of vitamins. CRC Press, Baton Raton, pp 413–457

    Google Scholar 

  26. Allen LH (2009) How common is vitamin B-12 deficiency? Am J Clin Nutr 89(2):693S–696S

    Article  CAS  PubMed  Google Scholar 

  27. Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference, I., O.B.V. its Panel on Folate, and Choline, The National Academies Collection: Reports funded by National Institutes of Health, in Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B(6), Folate, Vitamin B(12), Pantothenic Acid, Biotin, and Choline. 1998, National Academies Press (US) Copyright © 1998, National Academy of Sciences: Washington (DC)

    Google Scholar 

  28. Ralph G (2013) Physiology, dietary sources, and requirements. In: Caballero B (ed) Encyclopedia of human nutrition. Academic, pp 351–356

    Google Scholar 

  29. Harmening D (2002) Megaloblastic anemia. In: Clinical hematology and fundamentals of hemostasis, 4th edn. F.A. Davis Co, Philadelphia, pp 112–119

    Google Scholar 

  30. Provan D et al (2010) Red cell disorders. In: Oxford handbook of clinical haematology, 3rd edn. Oxford University Press, Oxford, pp 46–47

    Google Scholar 

  31. Tucker KL et al (2000) Plasma vitamin B-12 concentrations relate to intake source in the Framingham offspring study. Am J Clin Nutr 71(2):514–522

    Article  CAS  PubMed  Google Scholar 

  32. Gille D, Schmid A (2015) Vitamin B12 in meat and dairy products. Nutr Rev 73(2):106–115

    Article  PubMed  Google Scholar 

  33. Ball GFM (1998) Vitamin B12. In: Bioavailability and analysis of vitamins in foods. Chapman & Hall, London, pp 497–515

    Chapter  Google Scholar 

  34. Watanabe F (2007) Vitamin B12 sources and bioavailability. Exp Biol Med (Maywood) 232(10):1266–1274

    Article  CAS  Google Scholar 

  35. Premkumar M, et al (2012) Cobalamin and folic Acid status in relation to the etiopathogenesis of pancytopenia in adults at a tertiary care centre in north India. Anemia, 2012. p 707402

    Google Scholar 

  36. Carmel R et al (2003) Update on cobalamin, folate, and homocysteine Hematology. Am Soc Hematol Educ Program:62–81

    Google Scholar 

  37. Selhub J et al (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270(22):2693–2698

    Article  CAS  PubMed  Google Scholar 

  38. Pietrzik K, Bronstrup A (1998) Vitamins B12, B6 and folate as determinants of homocysteine concentration in the healthy population. Eur J Pediatr 157(Suppl 2):S135–S138

    Article  CAS  PubMed  Google Scholar 

  39. Guttormsen AB et al (1996) Kinetics of total plasma homocysteine in subjects with hyperhomocysteinemia due to folate or cobalamin deficiency. Am J Clin Nutr 63(2):194–202

    Article  CAS  PubMed  Google Scholar 

  40. Stabler SP, Lindenbaum J, Allen RH (1996) The use of homocysteine and other metabolites in the specific diagnosis of vitamin B-12 deficiency. J Nutr 126(4 Suppl):1266S–1272S

    Article  CAS  PubMed  Google Scholar 

  41. Yajnik CS et al (2007) Oral vitamin B12 supplementation reduces plasma total homocysteine concentration in women in India. Asia Pac J Clin Nutr 16(1):103–109

    CAS  PubMed  Google Scholar 

  42. Naik S et al (2013) Daily milk intake improves vitamin B-12 status in young vegetarian Indians: an intervention trial. Nutr J 12:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. GyÖRgy P (1934) Vitamin B2 and the pellagra-like dermatitis in rats. Nature 133(3361):498–499

    Article  Google Scholar 

  44. Harris SA, Folkers K (1939) Synthesis of vitamin B6. J Am Chem Soc 61(5):1245–1247

    Article  CAS  Google Scholar 

  45. Ahmad I et al (2013) Vitamin B6: deficiency diseases and methods of analysis. Pak J Pharm Sci 26(5):1057–1069

    CAS  PubMed  Google Scholar 

  46. Magnusdottir S et al (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Cheng SB et al (2016) Folate and vitamin B-6 status are not associated with homocysteine, oxidative stress and antioxidant capacities in patients with hepatocellular carcinoma. Eur J Clin Nutr 70(7):855–858

    Article  CAS  PubMed  Google Scholar 

  48. Keles M et al (2010) Antioxidative status and lipid peroxidation in kidney tissue of rats fed with vitamin B(6)-deficient diet. Ren Fail 32(5):618–622

    Article  CAS  PubMed  Google Scholar 

  49. Miller JW et al (1992) Effect of vitamin B-6 deficiency on fasting plasma homocysteine concentrations. Am J Clin Nutr 55(6):1154–1160

    Article  CAS  PubMed  Google Scholar 

  50. Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75(2):321–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Henriques BJ et al (2010) Emerging roles for riboflavin in functional rescue of mitochondrial beta-oxidation flavoenzymes. Curr Med Chem 17(32):3842–3854

    Article  CAS  PubMed  Google Scholar 

  52. Powers HJ, Corfe BM, Nakano E (2012) Riboflavin in development and cell fate. Subcell Biochem 56:229–245

    Article  CAS  PubMed  Google Scholar 

  53. Ross NS, Hansen TP (1992) Riboflavin deficiency is associated with selective preservation of critical flavoenzyme-dependent metabolic pathways. Biofactors 3(3):185–190

    CAS  PubMed  Google Scholar 

  54. Mosegaard S et al (2020) Riboflavin deficiency-implications for general human health and inborn errors of metabolism. Int J Mol Sci 21(11)

    Google Scholar 

  55. Auclair O, Han Y, Burgos SA (2019) Consumption of Milk and alternatives and their contribution to nutrient intakes among Canadian adults: evidence from the 2015 Canadian community health survey-nutrition. Nutrients 11(8)

    Google Scholar 

  56. Thakur K, Tomar SK, De S (2016) Lactic acid bacteria as a cell factory for riboflavin production. Microb Biotechnol 9(4):441–451

    Article  CAS  PubMed  Google Scholar 

  57. Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77(6):1352–1360

    Article  CAS  PubMed  Google Scholar 

  58. Liu S et al (2020) Production of riboflavin and related cofactors by biotechnological processes. Microb Cell Factories 19(1):31

    Article  CAS  Google Scholar 

  59. Said HM (2011) Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 437(3):357–372

    Article  CAS  PubMed  Google Scholar 

  60. Suwannasom N et al (2020) Riboflavin: the health benefits of a forgotten natural vitamin. Int J Mol Sci 21(3)

    Google Scholar 

  61. Kang SS et al (1991) Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 48(3):536–545

    CAS  PubMed  PubMed Central  Google Scholar 

  62. McNulty H et al (2006) Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C->T polymorphism. Circulation 113(1):74–80

    Article  CAS  PubMed  Google Scholar 

  63. Schoenen J, Lenaerts M, Bastings E (1994) High-dose riboflavin as a prophylactic treatment of migraine: results of an open pilot study. Cephalalgia 14(5):328–329

    Article  CAS  PubMed  Google Scholar 

  64. Soares MJ et al (1993) The effect of exercise on the riboflavin status of adult men. Br J Nutr 69(2):541–551

    Article  CAS  PubMed  Google Scholar 

  65. American Dietetic A et al (2009) American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc 41(3):709–731

    Article  CAS  Google Scholar 

  66. Koc H et al (2002) Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry. Anal Chem 74(18):4734–4740

    Article  CAS  PubMed  Google Scholar 

  67. Sakamoto A et al (2002) Betaine and homocysteine concentrations in foods. Pediatr Int 44(4):409–413

    Article  CAS  PubMed  Google Scholar 

  68. Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80(3):539–549

    Article  CAS  PubMed  Google Scholar 

  69. Schwahn BC et al (2003) Pharmacokinetics of oral betaine in healthy subjects and patients with homocystinuria. Br J Clin Pharmacol 55(1):6–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Davies SE et al (1988) Betaine metabolism in human neonates and developing rats. Clin Chim Acta 178(3):241–249

    Article  CAS  PubMed  Google Scholar 

  71. Lever M et al (1994) Abnormal glycine betaine content of the blood and urine of diabetic and renal patients. Clin Chim Acta 230(1):69–79

    Article  CAS  PubMed  Google Scholar 

  72. Dellow WJ et al (2001) Glycine betaine excretion is not directly linked to plasma glucose concentrations in hyperglycaemia. Diabetes Res Clin Pract 52(3):165–169

    Article  CAS  PubMed  Google Scholar 

  73. Dellow WJ et al (1999) Elevated glycine betaine excretion in diabetes mellitus patients is associated with proximal tubular dysfunction and hyperglycemia. Diabetes Res Clin Pract 43(2):91–99

    Article  CAS  PubMed  Google Scholar 

  74. Millian NS, Garrow TA (1998) Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch Biochem Biophys 356(1):93–98

    Article  CAS  PubMed  Google Scholar 

  75. Eikelboom JW et al (1999) Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 131(5):363–375

    Article  CAS  PubMed  Google Scholar 

  76. Brattstrom L et al (1992) Hyperhomocysteinaemia in stroke: prevalence, cause, and relationships to type of stroke and stroke risk factors. Eur J Clin Investig 22(3):214–221

    Article  CAS  Google Scholar 

  77. Katsiki N, Perez-Martinez P, Mikhailidis DP (2017) Homocysteine and non-cardiac vascular disease. Curr Pharm Des 23(22):3224–3232

    Article  CAS  PubMed  Google Scholar 

  78. Arnesen E et al (1995) Serum total homocysteine and coronary heart disease. Int J Epidemiol 24(4):704–709

    Article  CAS  PubMed  Google Scholar 

  79. Olthof MR et al (2003) Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr 133(12):4135–4138

    Article  CAS  PubMed  Google Scholar 

  80. Zhu J et al (2019) The association between tea consumption and Hyperhomocysteine in Chinese hypertensive patients. Am J Hypertens 32(2):209–215

    Article  CAS  PubMed  Google Scholar 

  81. Panagiotakos DB et al (2003) The J-shaped effect of coffee consumption on the risk of developing acute coronary syndromes: the CARDIO2000 case-control study. J Nutr 133(10):3228–3232

    Article  CAS  PubMed  Google Scholar 

  82. Tavani A et al (2001) Alcohol, smoking, coffee and risk of non-fatal acute myocardial infarction in Italy. Eur J Epidemiol 17(12):1131–1137

    Article  CAS  PubMed  Google Scholar 

  83. Gyntelberg F et al (1995) Coffee consumption and risk of ischaemic heart disease--a settled issue? J Intern Med 237(1):55–61

    Article  CAS  PubMed  Google Scholar 

  84. Venn BJ et al (2002) Dietary counseling to increase natural folate intake: a randomized, placebo-controlled trial in free-living subjects to assess effects on serum folate and plasma total homocysteine. Am J Clin Nutr 76(4):758–765

    Article  CAS  PubMed  Google Scholar 

  85. Verhoef P et al (2002) Contribution of caffeine to the homocysteine-raising effect of coffee: a randomized controlled trial in humans. Am J Clin Nutr 76(6):1244–1248

    Article  CAS  PubMed  Google Scholar 

  86. Wolever TM (2002) Abstention from filtered coffee reduces the concentrations of plasma homocysteine and serum cholesterol. Am J Clin Nutr 75(5):948–949. author reply 949-50

    Article  CAS  PubMed  Google Scholar 

  87. Panagiotakos DB et al (2004) The association between coffee consumption and plasma total homocysteine levels: the “ATTICA” study. Heart Vessel 19(6):280–286

    Article  Google Scholar 

  88. Samman S et al (2003) A mixed fruit and vegetable concentrate increases plasma antioxidant vitamins and folate and lowers plasma homocysteine in men. J Nutr 133(7):2188–2193

    Article  CAS  PubMed  Google Scholar 

  89. Bhargava S, Tyagi SC (2014) Nutriepigenetic regulation by folate-homocysteine-methionine axis: a review. Mol Cell Biochem 387(1–2):55–61

    Article  CAS  PubMed  Google Scholar 

  90. Zeng R et al (2015) The effect of folate fortification on folic acid-based homocysteine-lowering intervention and stroke risk: a meta-analysis. Public Health Nutr 18(8):1514–1521

    Article  PubMed  Google Scholar 

  91. San Cheang W et al (2015) Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress. Sci Rep 5:10340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Olthof MR et al (2001) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73(3):532–538

    Article  CAS  PubMed  Google Scholar 

  93. Zhu BT, Ezell EL, Liehr JG (1994) Catechol-O-methyltransferase-catalyzed rapid O-methylation of mutagenic flavonoids. Metabolic inactivation as a possible reason for their lack of carcinogenicity in vivo. J Biol Chem 269(1):292–299

    Article  CAS  PubMed  Google Scholar 

  94. Miranda AM et al (2017) Association between coffee consumption and its polyphenols with cardiovascular risk factors: a population-based study. Nutrients 9(3)

    Google Scholar 

  95. Zheng J et al (2017) Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases. Int J Mol Sci 18(3)

    Google Scholar 

  96. Singh GM et al (2015) Global, regional, and National Consumption of sugar-sweetened beverages, fruit juices, and Milk: a systematic assessment of beverage intake in 187 countries. PLoS One 10(8):e0124845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Peluso I et al (2014) Consumption of mixed fruit-juice drink and vitamin C reduces postprandial stress induced by a high fat meal in healthy overweight subjects. Curr Pharm Des 20(6):1020–1024

    Article  CAS  PubMed  Google Scholar 

  98. Rodríguez-Roque M et al (2014) In vitro bioaccessibility of health-related compounds from a blended fruit juice–soymilk beverage: influence of the food matrix. J Funct Foods 7

    Google Scholar 

  99. Simao TN et al (2013) Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome. Br J Nutr 110(10):1885–1894

    Article  CAS  PubMed  Google Scholar 

  100. Ben Hmidene A et al (2017) Inhibitory activities of antioxidant flavonoids from Tamarix gallica on amyloid aggregation related to Alzheimer’s and type 2 diabetes diseases. Biol Pharm Bull 40(2):238–241

    Article  CAS  PubMed  Google Scholar 

  101. Salissou MTM et al (2018) Methanolic extract of Tamarix Gallica attenuates hyperhomocysteinemia induced AD-like pathology and cognitive impairments in rats. Aging (Albany NY) 10(11):3229–3248

    Article  CAS  Google Scholar 

  102. Norsidah KZ et al (2013) Palm tocotrienol-rich fraction reduced plasma homocysteine and heart oxidative stress in rats fed with a high-methionine diet. J Physiol Biochem 69(3):441–449

    Article  CAS  PubMed  Google Scholar 

  103. McAnulty SR et al (2005) Effect of alpha-tocopherol supplementation on plasma homocysteine and oxidative stress in highly trained athletes before and after exhaustive exercise. J Nutr Biochem 16(9):530–537

    Article  CAS  PubMed  Google Scholar 

  104. Racek J et al (2005) The influence of folate and antioxidants on homocysteine levels and oxidative stress in patients with hyperlipidemia and hyperhomocysteinemia. Physiol Res 54(1):87–95

    CAS  PubMed  Google Scholar 

  105. Saande CJ et al (2019) Dietary egg protein prevents Hyperhomocysteinemia via Upregulation of hepatic Betaine-Homocysteine S-Methyltransferase activity in folate-restricted rats. J Nutr 149(8):1369–1376

    Article  PubMed  Google Scholar 

  106. Haddadi-Guemghar H et al (2017) Effect of lyophilized prune extract on hyperhomocysteinemia in mice. Food Chem Toxicol 103:183–187

    Article  CAS  PubMed  Google Scholar 

  107. Ide N et al (1999) Antioxidant effects of fructosyl arginine, a Maillard reaction product in aged garlic extract. J Nutr Biochem 10(6):372–376

    Article  CAS  PubMed  Google Scholar 

  108. Steiner M et al (1996) A double-blind crossover study in moderately hypercholesterolemic men that compared the effect of aged garlic extract and placebo administration on blood lipids. Am J Clin Nutr 64(6):866–870

    Article  CAS  PubMed  Google Scholar 

  109. Yeh YY, Yeh SM (2006) Homocysteine-lowering action is another potential cardiovascular protective factor of aged garlic extract. J Nutr 136(3 Suppl):745S–749S

    Article  CAS  PubMed  Google Scholar 

  110. Yeh YY, Liu L (2001) Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nutr 131(3s):989S–993S

    Article  CAS  PubMed  Google Scholar 

  111. El-Saleh SC, Al-Sagair OA, Al-Khalaf MI (2004) Thymoquinone and Nigella sativa oil protection against methionine-induced hyperhomocysteinemia in rats. Int J Cardiol 93(1):19–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira O. Abd El-Azim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd El-Azim, A.O. (2021). The Effects of B-Vitamins, Dietary Bioactive Agents and Functional Foods on Hyperhomocysteinemia. In: Waly, M.I. (eds) Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia. Springer, Cham. https://doi.org/10.1007/978-3-030-57839-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57839-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57838-1

  • Online ISBN: 978-3-030-57839-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics