Skip to main content

Chapter IV: Euclidean Lattices, Theta Invariants, and Thermodynamic Formalism

  • Chapter
  • First Online:
Book cover Arakelov Geometry and Diophantine Applications

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2276))

  • 1301 Accesses

Abstract

These are the notes of lectures delivered at Grenoble’s summer school on Arakelov Geometry and Diophantine Applications, in June 2017. They constitute an introduction to the study of Euclidean lattices and of their invariants defined in terms of theta series.

Recall that a Euclidean lattice is defined as a pair \(\overline {E}:= (E, \Vert .\Vert )\) where E is some free \(\mathbb {Z}\)-module of finite rank E and ∥.∥ is some Euclidean norm on the real vector space \(E_{\mathbb {R}} := E \otimes \mathbb {R}\). The most basic of these invariants is the non-negative real number:

$$\displaystyle h^0_\theta ({\overline E}) := \log \sum _{v \in E} e^{- \pi \Vert v \Vert ^2}. $$

In these notes, we explain how such invariants naturally arise when one investigates basic questions concerning classical invariants of Euclidean lattices, such as their successive minima, their covering radius, or the number of lattice points in balls of a given radius.

We notably discuss their significance from the perspective of Arakelov geometry and of the analogy between number fields and function fields, their role (discovered by Banaszczyk) in the derivation of optimal transference estimates, and their interpretation in terms of the formalism of statistical thermodynamics.

These notes have been primarily written for an audience of arithmetic geometers, but should also be suited to a wider circle of mathematicians and theoretical physicists with some interest in Euclidean lattices or in the mathematical foundations of statistical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, MA, 1978)

    MATH  Google Scholar 

  2. S.J. Arakelov, Theory of intersections on the arithmetic surface, in Proceedings of the International Congress of Mathematicians (Vancouver, BC, 1974), Montreal, 1975, vol. 1, pp 405–408

    MathSciNet  Google Scholar 

  3. N.W. Ashcroft, n.d. Mermin, Solid State Physics (Brooks/Cole, Cengage Learning, Boston, 1976)

    Google Scholar 

  4. V.I. Arnol’d, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60, 2nd edn. (Springer, New York, 1989)

    Google Scholar 

  5. W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625–635 (1993)

    Article  MathSciNet  Google Scholar 

  6. L. Bétermin, M. Petrache, Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017)

    Article  MathSciNet  Google Scholar 

  7. L. Boltzmann, Weitere Studien über Wärmegleichgewicht unter Gasmolekülen. Wien. Ber. 66, 275–370 (1872)

    MATH  Google Scholar 

  8. L. Boltzmann, Über die Beziehungen zwischen dem zweiten Hauptsatz der Wärmetheorie und der Warscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wien. Ber. 76, 373–435 (1877)

    Google Scholar 

  9. J.-B. Bost, Theta Invariants of Euclidean Lattices and Infinite-Dimensional Hermitian Vector Bundles over Arithmetic Curves. Progress in Mathematics, vol. 334 (Birkhaüser, Basel, 2020)

    Google Scholar 

  10. J.-B. Bost, Réseaux euclidiens, séries thêta et pentes (d’après W. Banasczyk, O. Regev, D. Dadush, S. Stephens–Davidowitz, …). Séminaire N. Bourbaki, Exposé 1152, Octobre 2018, http://www.bourbaki.ens.fr/TEXTES/Exp1152-Bost.pdf; to appear in Astérisque 422 (2020)

  11. J.-B. Bost, K. Künnemann, Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers. Adv. Math. 223, 987–1106 (2010)

    MathSciNet  MATH  Google Scholar 

  12. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities – A Nonasymptotic Theory of Independence (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  13. J.W.S. Cassels, An Introduction to the Geometry of Numbers. Grundlehren der Mathematischen Wissenschaften, vol. 99, second corrected printing (Springer, Berlin/New York, 1971)

    Google Scholar 

  14. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)

    Article  MathSciNet  Google Scholar 

  15. H. Cohn, M. de Courcy-Ireland, The Gaussian core model in high dimensions (2016). arXiv:1603.09684

    Google Scholar 

  16. H. Cohn, A. Kumar, Optimality and uniqueness of the Leech lattice among lattices. Ann. Math. (2) 170, 1003–1050 (2009)

    Google Scholar 

  17. J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften, vol. 290, 3rd edn. (Springer, New York, 1999)

    Google Scholar 

  18. E.T. Copson, Asymptotic Expansions. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 55 (Cambridge University Press, Cambridge, 1965)

    Google Scholar 

  19. H. Cramér, Sur un nouveau théorème-limite de la théorie des probabilités, in Conférences internationales de sciences mathématiques (Université de Genève 1937). Théorie des probabilités. III: Les sommes et les fonctions de variables aléatoires. Actualités scientifiques et industrielles, vol. 736 (Hermann, Paris, 1938), pp. 5–23

    Google Scholar 

  20. D. Dadush, O. Regev, Towards strong reverse Minkowski-type inequalities for lattices, in 57th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2016 (IEEE Computer Society, Los Alamitos, CA, 2016), pp. 447–456

    Google Scholar 

  21. C.G. Darwin, R.H. Fowler, On the partition of energy. Philos. Mag. 44, 450–479 (1922)

    Article  Google Scholar 

  22. C.G. Darwin, R.H. Fowler, On the partition of energy. – Part II. Statistical principles and thermodynamics. Philos. Mag. 44, 823–842 (1922)

    Google Scholar 

  23. C.G. Darwin, R.H. Fowler, Fluctuations in an assembly in statistical equilibrium. Proc. Camb. Philos. Soc. 21, 391–404 (1923)

    MATH  Google Scholar 

  24. R. Dedekind, H. Weber, Theorie der algebraischen Functionen einer Veränderlichen. J. Reine Angew. Math. 92, 181–291 (1882)

    MathSciNet  MATH  Google Scholar 

  25. W. Ebeling, Lattices and Codes – A Course Partially Based on Lectures by Friedrich Hirzebruch. Advanced Lectures in Mathematics, 3rd edn. (Springer Spektrum, Wiesbaden, 2013)

    Google Scholar 

  26. M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions. Pure and Applied Mathematics, vol. 23 (Academic, New York/London, 1966)

    Google Scholar 

  27. R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der Mathematischen Wissenschaften, vol. 271 (Springer, New York, 1985)

    Google Scholar 

  28. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17, 228–249 (1923)

    Article  MathSciNet  Google Scholar 

  29. R.H. Fowler, Statistical Mechanics: The Theory of the Properties of Matter in Equilibrium, 2nd edn. (Cambridge University Press, Cambridge, 1936)

    MATH  Google Scholar 

  30. J.W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics. Yale Bicentennial Publications (Scribner and Sons, New York, 1902)

    MATH  Google Scholar 

  31. H. Gillet, B. Mazur, C. Soulé, A note on a classical theorem of Blichfeldt. Bull. Lond. Math. Soc. 23, 131–132 (1991)

    Article  MathSciNet  Google Scholar 

  32. D.R. Grayson, Reduction theory using semistability. Comment. Math. Helv. 59, 600–634 (1984)

    Article  MathSciNet  Google Scholar 

  33. R.P. Groenewegen, An arithmetic analogue of Clifford’s theorem. J. Théor. Nombres Bordeaux 13, 143–156 (2001). 21st Journées Arithmétiques (Rome, 2001)

    Google Scholar 

  34. G.H. Hardy, S. Ramanujan, Asymptotic formulae for the distribution of integers of various types. Proc. Lond. Math. Soc. (2) 16, 112–132 (1917)

    Google Scholar 

  35. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2nd edn. (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  36. E. Hecke, Über die Zetafunktion beliebiger algebraischer Zahlkörper. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1917, 77–89 (1917)

    Google Scholar 

  37. C. Hermite, Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objets de la théorie des nombres. J. Reine Angew. Math. 14, 261–315 (1850)

    MathSciNet  Google Scholar 

  38. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Grundlehren der Mathematischen Wissenschaften, vol. 256, 2nd edn. (Springer, Berlin, 1990)

    Google Scholar 

  39. L. Hörmander, Notions of Convexity (Birkhäuser Boston Inc., Boston, MA, 1994)

    MATH  Google Scholar 

  40. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  41. R.B. Israel, Convexity in the Theory of Lattice Gases, with an introduction by Arthur S. Wightman. Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1979)

    Google Scholar 

  42. A.I. Khinchin, Mathematical Foundations of Statistical Mechanics. Translated by G. Gamow (Dover Publications, Inc., New York, NY, 1949)

    Google Scholar 

  43. A. Korkine, G. Zolotareff, Sur les formes quadratiques. Math. Ann. 6, 366–389 (1873)

    Article  MathSciNet  Google Scholar 

  44. L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen. (Festschrift zu Herrn Ernst Eduard Kummers fünfzigjährigem Doctor-Jubiläum, 10 September 1881). J. Reine Angew. Math. 92, 1–122 (1882)

    Google Scholar 

  45. J.C. Lagarias, Point lattices, in Handbook of combinatorics, vols. 1, 2 (Elsevier Sci. B. V., Amsterdam, 1995), pp. 919–966

    Google Scholar 

  46. J.C. Lagarias, H.W. Lenstra Jr., C.-P. Schnorr, Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10, 333–348 (1990)

    Article  MathSciNet  Google Scholar 

  47. O.E. Lanford, Entropy and equilibrium states in classical statistical mechanics, in Statistical mechanics and mathematical problems (Battelle Seattle 1971 Rencontres), ed. by A. Lenard. Lecture Notes in Physics, vol. 20 (Springer, Berlin, Heidelberg, 1973), pp. 1–113

    Google Scholar 

  48. Yu.I. Manin, New dimensions in geometry, in Workshop Bonn 1984 (Bonn, 1984). Lecture Notes in Mathematics, vol. 1111 (Springer, Berlin, 1985), pp. 59–101

    Google Scholar 

  49. J. Martinet, Perfect Lattices in Euclidean Spaces. Grundlehren der Mathematischen Wissenschaften, vol. 327 (Springer, Berlin, 2003)

    Google Scholar 

  50. J.E. Mazo, A.M. Odlyzko, Lattice points in high-dimensional spheres. Monatsh. Math. 110, 47–61 (1990)

    Article  MathSciNet  Google Scholar 

  51. T. McMurray Price, Numerical cohomology. Algebr. Geom. 4, 136–159 (2017)

    Article  MathSciNet  Google Scholar 

  52. J. Milnor, D. Husemoller, Symmetric Bilinear Forms (Springer, New York/Heidelberg, 1973). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73

    Google Scholar 

  53. H. Minkowski, Geometrie der Zahlen (Teubner-Verlag, Leipzig, Berlin, 1896)

    Google Scholar 

  54. M. Morishita, Integral representations of unramified Galois groups and matrix divisors over number fields. Osaka J. Math. 32, 565–576 (1995)

    MathSciNet  MATH  Google Scholar 

  55. A.M. Odlyzko, Explicit Tauberian estimates for functions with positive coefficients. J. Comput. Appl. Math. 41, 187–197 (1992)

    Article  MathSciNet  Google Scholar 

  56. M. Planck, Treatise on Thermodynamics (Longman, Green, and Co., London, New York, Bombay, 1903)

    Google Scholar 

  57. M. Planck, The theory of heat radiation. Authorised translation by M. Masius (1914)

    Google Scholar 

  58. M. Planck, Henri Poincaré und die Quantentheorie. Acta Math. 38, 387–397 (1921)

    Article  MathSciNet  Google Scholar 

  59. H. Poincaré, Sur la théorie des quanta. Journal de Physique théorique et appliquée 2, 5–34 (1912) (= Oeuvres, Tome IX, pp. 606–659)

    Google Scholar 

  60. D. Quillen, Quillen Notebooks 1968–2003, ed. by G. Luke, G. Segal. Published online by the Clay Mathematics Institute. http://www.claymath.org/publications/quillen-notebooks

  61. R.A. Rankin, The difference between consecutive prime numbers. J. Lond. Math. Soc. 11, 242–245 (1936)

    MathSciNet  MATH  Google Scholar 

  62. O. Regev, N. Stephens-Davidowitz, An inequality for Gaussians on lattices. SIAM J. Discrete Math. 31, 749–757 (2017)

    Article  MathSciNet  Google Scholar 

  63. O. Regev, N. Stephens-Davidowitz, A reverse Minkowski theorem, in STOC’17—Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (ACM, New York, 2017), pp. 941–953

    MATH  Google Scholar 

  64. D. Roessler. The Riemann-Roch theorem for arithmetic curves. Diplomarbeit, ETH Zürich, 1993

    Google Scholar 

  65. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw-Hill Book Co., New York, 1987)

    MATH  Google Scholar 

  66. S.S. Ryškov, E.P. Baranovskiĭ, Classical methods of the theory of lattice packings. Uspekhi Mat. Nauk 34, 3–63, 256 (1979)

    Google Scholar 

  67. P. Sarnak, A. Strömbergsson, Minima of Epstein’s zeta function and heights of flat tori. Invent. Math. 165, 115–151 (2006)

    Article  MathSciNet  Google Scholar 

  68. F.K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Z. 33, 1–32 (1931)

    Google Scholar 

  69. E. Schrödinger, Statistical Thermodynamics, 2nd edn. A course of seminar lectures delivered in January-March 1944, at the School of Theoretical Physics, Dublin Institute for Advanced Studies (Cambridge University Press, Cambridge, 1952)

    Google Scholar 

  70. B. Simon, Convexity. Cambridge Tracts in Mathematics, vol. 187 (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  71. D.W. Stroock, Probability Theory. An Analytic View, 2nd edn. (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  72. U. Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischer Formen. Arch. Math. (Basel) 27, 604–610 (1976)

    Article  MathSciNet  Google Scholar 

  73. L. Szpiro, Degrés, intersections, hauteurs. Astérisque 127, 11–28 (1985)

    MathSciNet  MATH  Google Scholar 

  74. G. van der Geer, R. Schoof, Effectivity of Arakelov divisors and the theta divisor of a number field. Selecta Math. (N.S.) 6, 377–398 (2000)

    Google Scholar 

  75. A. Weil, Sur l’analogie entre les corps de nombres algébriques et les corps de fonctions algébriques. Rev. Sci. 77, 104–106 (1939)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Benoît Bost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bost, JB. (2021). Chapter IV: Euclidean Lattices, Theta Invariants, and Thermodynamic Formalism. In: Peyre, E., Rémond, G. (eds) Arakelov Geometry and Diophantine Applications. Lecture Notes in Mathematics, vol 2276. Springer, Cham. https://doi.org/10.1007/978-3-030-57559-5_5

Download citation

Publish with us

Policies and ethics