Skip to main content

Preparation of Charge Materials for Ferroalloys Smelting

  • Chapter
  • First Online:
Ferroalloys

Abstract

The use of fine and wet concentrates reduces the productivity of electric furnaces, worsens their technical and economic parameters and is unsafe for maintenance personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velichko BF, Gavrilov VA, Gasik MI et al (1996) Enrichment of manganese ores. Metallurgy of manganese of Ukraine, Kyiv, 471 p (in Russian)

    Google Scholar 

  2. Hooper RT (1974) The optimum utilization of raw materials in manganese smelting. In: Proceedings of the first international conference on ferroalloys (INFACON 74), Johannesburg, 22–26 Apr 1974, pp 101–105

    Google Scholar 

  3. Hooper RT (1978) Production and smelting of manganese sinter. In: Proceedings of the 36th electric furnace conference, pp 118–126

    Google Scholar 

  4. Dancoisne PL (1970) Optimum manganese ore preparation. In: Proceedings of the 28th electric furnace conference, pp 106–111

    Google Scholar 

  5. Olsen SE, Tangstad M, Lindstad T (2007) Production of manganese ferroalloys. SINTEF and Tapir Academic Press, Trondheim, p 247

    Google Scholar 

  6. Gasik MI, Lyakishev NP, Emlin BI (1988) Theory and technology of ferroalloys production. Metallurgy, Moscow, p 784 (in Russian)

    Google Scholar 

  7. Kisin DA, Kravchenko VA, Shilo AA et al (1969) Obtaining sinter from a mixture of Nikopol manganese concentrates. Steel 2:142–143 (in Russian)

    Google Scholar 

  8. Koryakova OF (1963) Sintering of manganese ores and concentrates from the Nikopol deposit. Transactions of NTO ChM, Moscow, pp 140–145 (in Russian)

    Google Scholar 

  9. Kutsin VS, Olshansky VI, Dedov YuB, Gasik MI, Gasik MM (2014) Smelting of ferrosiliconmanganese with the use of manganese magnesium sinter. Steel 1:24–27 (in Russian)

    Google Scholar 

  10. Krivenko VV, Ovcharuk AN, Pereverzev AD (2004) Research and development of technology for the production of sinter, providing its physico-mechanical properties. In: Modern problems of metallurgy. vol 2. Dnipro, 272 p (in Russian)

    Google Scholar 

  11. Petrov AV, Kostyuk AA, Chikomasov VF et al (1985) Development of the technology for sintering manganese concentrate in a high layer. Bull Cent Res Inst Iron Metall 14(994):32–34 (in Russian)

    Google Scholar 

  12. Rogachev IP, Ovcharuk AN, Petrov AV et al (1985) Production technology and the quality of sinter with metal additives. In: Intensification of electroferroalloy processes and improving product quality. Dnipro, pp 16–17 (in Russian)

    Google Scholar 

  13. Ovcharuk AN, Ugantserovsky OG, Mironenko PF et al (1985) The use of secondary materials in the sintering of manganese. In: Intensification of electroferroalloy processes and improving product quality. Dnipro, pp 17–18 (in Russian)

    Google Scholar 

  14. Koval AV, Grishchenko SG, Mironenko PF et al (1999) Improvement of the production technology of manganese sinter. In: Proceedings of the international conference, Dnipro, pp 43–44 (in Russian)

    Google Scholar 

  15. Fedorenko IV, Kopyrin IA, Pershina RF (1981) Obtaining sinter from manganese concentrate. Bull Cent Res Inst Iron Metall 20(894):52–53 (in Russian)

    Google Scholar 

  16. Ryss MA Ferroalloy production (1985) Metallurgy, Moscow, 344 p (in Russian)

    Google Scholar 

  17. Zhuchkov VI, Vatolin NA, Leontiev LI et al (1994) Ural Manganese. Ores and ferroalloys. Yekaterinburg, 1994, pp 53–62 (in Russian)

    Google Scholar 

  18. Kashin VV, Krasheninnikov MV (1994) Ural manganese. Ores and ferroalloys. Yekaterinburg, 1994, pp 7–14 (in Russian)

    Google Scholar 

  19. Akberdin AA (2013) Agglomeration of refractory chromite ore. In: Akberdin AA, Kim AS, Akberdin RA (eds) Proceedings of INFACON XIII—the thirteenth international ferro-alloy congress. Efficient technologies in ferroalloy industry. (June 9–12, 2013 Almaty, Kazakhstan), vol I, pp 1–4

    Google Scholar 

  20. Khitrik SI et al (1968) Ferrochromium electrometallurgy. Metallurgy, Moscow, 148 p (in Russian)

    Google Scholar 

  21. Khokhlov DG et al (1965) Development of technology for agglomeration of chromite ores and concentrates. Scientific. In: Proceedings of Uralmekhanobr. Sverdlovsk: Uralmekhanobr, no 12. pp 43–45 (in Russian)

    Google Scholar 

  22. Banerjee GN et al (2010) Sintering studies on сhromite fines and concentrates and some design aspects. J Mines, Metals and Fuels 58(9):251–254

    Google Scholar 

  23. Pietsch W (2005) Agglomeration in industry. Occurrence and applications Wiley, 375 p

    Google Scholar 

  24. Wegman EF (1976) Ore and concentrate tubing. Metallurgy, Moscow, 224 p (in Russian)

    Google Scholar 

  25. Rovensky II, Petrov A, Zhuravlev FM, Krendelev VL (1967) Production of pellets from manganese flotation concentrates. Steel 7:613–616 (in Russian)

    Google Scholar 

  26. Petrov AV, Voskerichan NV, Berezhnoy NN (1975) Firing of pellets from manganese concentrate. Bull Cent Res Inst Iron Metall 4(744):26–29 (in Russian)

    Google Scholar 

  27. Chaychenko AA, Murakhovsky VV, Grishchenko SG et al (1983) Metallurgy and coke chemistry. Kyiv: Tekhnika, no 81, pp 36–39 (in Russian)

    Google Scholar 

  28. Tskitishvili AA, Arabuli IA, Begadze LA (1986) Metallurgy of manganese. Tbilisi, pp 90–91 (in Russian)

    Google Scholar 

  29. Gubin GV, Petrov AV, Drozhilov LA et al (1978) Production of ferroalloys: collection no. 6. Metallurgy, Moscow, 1978, pp 46–53 (in Russian)

    Google Scholar 

  30. Serov GV, Mizin VG, Koshkin GA et al (1976) The use of rounded charge in the smelting of 75% ferrosilicon. Steel 10:913–916 (in Russian)

    Google Scholar 

  31. Lotosh VE (2009) Unburnt agglomeration of fine materials and minerals fines. Ekaterinburg: Philanthrop Publishing House, 525 p (in Russian)

    Google Scholar 

  32. Thaning G (1974) The production of cold-bonded pellets from steel mill waste. In: Ironmaking proceedings, no 33, pp 73–79

    Google Scholar 

  33. Doughty FTC (1975) COBO: a low-cost cold bond process. In: Proceedings of the 14th biennial conference of the IBA, Hyannis, MA, Aug 1975, pp 173–182

    Google Scholar 

  34. Fedorov NF (1970) On the classification of binders. Cement, no. 10, pp 8–9 (in Russian)

    Google Scholar 

  35. Svensson J (1968) The grangcold pellet process. Steel Times 197(5):362–364

    Google Scholar 

  36. Ahmed Yasser, Mohamed FM (2005) Recycling of manganese secondary raw material via cold-bond palletizing process. La Metallurgia Italiana 97(10):33–38

    Google Scholar 

  37. Tolymbekova LB (2014) Development of technology for smelting ferrosiliconmanganese from pelletized high-silicon manganese raw materials. Abstract dis. … candidate of technical sciences. Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences. Yekaterinburg, (in Russian)

    Google Scholar 

  38. Dwarapudi S, Tathavadkar V, Rao BC, Kumar TKS, Ghosh TK, Denys M (2013) Development of cold bonded chromite pellets for ferrochromium production in. Submerged arc furnace. ISIJ Int 53(1):9–17

    Article  CAS  Google Scholar 

  39. Production of unbaked pellets from metallurgical wastes (1976). Ferrous metallurgy. Bulletin, no 5, pp 55–56 (in Russian)

    Google Scholar 

  40. Shchedrovitsky VY, Eliseev SB, Kopyrin IA (1986) Metallurgy of manganese. Tbilisi, pp 114–125 (in Russian)

    Google Scholar 

  41. Korotich VI (1978) Fundamentals of the theory and technology of preparation of raw materials for blast smelting. Metallurgy, Moscow, 208 p (in Russian)

    Google Scholar 

  42. Maerchak S (1982) Production of pellets. Moscow: Publishing house, Metallurgy, 232 p (in Russian)

    Google Scholar 

  43. Tolochko AI et al (1990) Utilization of dust and residues in ferrous metallurgy. Metallurgy, Moscow, 143 p (in Russian)

    Google Scholar 

  44. Khazanova TP et al (1961) Production of manganese alloys from low-grade oxide and carbonate ores. Development of the USSR ferroalloy industry. Kyiv, 122 p (in Russian)

    Google Scholar 

  45. Khvichia AP et al (1970) Smelting of silico-manganese from ore briquettes in a furnace with a capacity of 16.5 MV A. Steel. no 2, 138 p (in Russian)

    Google Scholar 

  46. Sukhorukov AI, Sosedko PM, Khitrik SI (1970) Steel. no 2, p 135 (in Russian)

    Google Scholar 

  47. Kozhevnikov IY, Ravich BM (1991) Agglomeration and the foundations of metallurgy. Moscow, Metallurgy, 296 p (in Russian)

    Google Scholar 

  48. Ravich BM (1982) The Briquetting of ores. Nedra, Moscow, 296 p (in Russian)

    Google Scholar 

  49. Dashevskii VY, Kashin VI, Lyakishev NP, Velitchko BF, Ishutin VI (1992) Improving the technological processes of production of manganese ferroalloys. Izvestiya VUZov. Ferrous Metallurgy, no 12, p 45 (in Russian)

    Google Scholar 

  50. Electronic resource. http://www.vargonalloys.se/index_eng.html

  51. Electronic resource. http://www.eurometa.fr/en/

  52. Mazmishvili SM et al (1992) Development and industrial development of technologies for producing dust briquettes and smelting manganese ferroalloys from them. Izvestiya VUZov. Ferrous Metallurgy. no 12, p 43 (In Russian)

    Google Scholar 

  53. BREX. Certificate of trademark (service mark) No. 498006, application No. 2012706053 of 02.03.2012. Right holder AM Bizhanov. (in Russian)

    Google Scholar 

  54. Duarte A, Lindquist WE (1999) Recovery of nickel laterite fines by extrusion. In: Proceedings 27th biennial conference. IBA, USA, pp 205–217

    Google Scholar 

  55. Bizhanov A, Kurunov I, Podgorodetskyi G, Dashevskii V, Pavlov A, Chadaeva O (2014) Extruded briquettes—new charge component for the ferroalloys production. ISIJ Int 54(10):2206–2214

    Article  CAS  Google Scholar 

  56. Zhdanov AV et al (2007) Study of reducibility of manganese ore raw materials electrometallurgy. no 4, pp 32–35 (in Russian)

    Google Scholar 

  57. Sokolov VN, Yurkovets DI, Razgulina OV (1997) Determination of tortuosity coefficient of pore channels by computer analysis of SEM images. Proc Russ Acad Sci Phys Ser 61(10):1898–1902

    CAS  Google Scholar 

  58. Ivanova VP, Kasatov BK, Krasavina TN (1974) Thermal analysis of minerals and rocks. Resources Publishing House, Leningrad, 399 p (in Russian)

    Google Scholar 

  59. Tolstunov VL, Petrov AV (1989) Study of the processes of phase and microstructural transformations in manganese ores during their reducing heating. Izvestiya VUZov Ferrous Metall 4:9–14 (in Russian)

    Google Scholar 

  60. Glasser FP (1962) The ternary system CaO–MnO–SiO2. J Am Ceram Soc 45(5):242

    Article  CAS  Google Scholar 

  61. Zhdanov AV (2007) Study of electric resistance of materials and batches used for ferromanganeseproduction. In: Zhdanov AV, Zayakin OV, Zhuchkov VI (eds) Electrometallurgy 6:24

    Google Scholar 

  62. Bizhanov FV, Steele RB, Podgorodetskyi GS, Kurunov IF, Dashevskii VY, Korovushkin VV (2013) Extruded briquettes (bricks) for ferroalloy production. Metallurgist 56(11–12):925–932

    Google Scholar 

  63. Pavlov AV et al (2000) Research of briquetting process of the fine chromium ores. In: 12th International ferroalloys conference, Helsinki, Finland, 6–9 June 2000

    Google Scholar 

  64. Mikhailov GG, Pashkeev IY, Senin AV et al (2001) Intensification of chromite carbothermic reduction. In: “Metallurgy and Metallurgists of the 21st Century”, international conference-debate. MISIS, Moscow, pp 83–98 (in Russian)

    Google Scholar 

  65. Akimov EN, Mal’kov, NV, Roschin VE (2013) The electrical conductivity of high-alumina chromic ore. Bull South Ural State Univ Ser “Metall” 13(1):186–188 (in Russian)

    Google Scholar 

  66. Kazchrome News (2018) Vestnik Kazchroma. 5(406):5 (in Russian)

    Google Scholar 

  67. Jonker AP (2015) Implementation of Tenova preheating technology at JSC Kazchrome. The fourteenth international ferroalloys congress May 31-June 4, 2015 Energy efficiency and environmental friendliness are the future of the global Ferroalloy industry Kyiv, Ukraine, pp 48–51

    Google Scholar 

  68. Naiker O (2007) The development and advantages of Xstrata Premus process. In: Naiker O (ed) INFACON XI—Delhi, India 2007, pp 112–119

    Google Scholar 

  69. Honkaniemi M (1991) The Outokumpu ferrochromium process. In: Honkaniemi M, Suvanto P (eds) UNEP industry and environmental, 1991, pp 63–66

    Google Scholar 

  70. Riekkola-Vanhanen M (1999) Finnish expert report on best available techniques in ferrochromium production. Marja Riekkola-Vanhanen–Helsinki, 1999, p 50

    Google Scholar 

  71. Neuschutz D (1992) Kinetic aspects of chromite ore reduction with coal at 1200–1550 °C. In: Neuschutz D (ed) INFACON 6, Cape Town, South Africa, 1992, pp 65–70

    Google Scholar 

  72. Xiao Y (2004) Solid state reduction of chromite with CO. In: Xiao Y, Schuffeneger C, Reuter M, Holappa L (eds) INFACON 6, Cape Town, South Africa, pp 26–35

    Google Scholar 

  73. Seetharaman S (2013) Treatise on Process Metallurgy, vol 3: industrial processes. Amsterdam, Elsevier (2013)

    Google Scholar 

  74. Naiker O and Riley T (2006) Xstrata Alloys in profile. In: Naiker O, Riley T (eds) South African Pyrometallurgy, S.A.I.M.M. 2006, pp 297–306

    Google Scholar 

  75. Yoshimura R et al (1981) Studies on the pelletizing of Chromium ores—Consideration a point of view on the properties of the raw materials. In: Yoshimura R (ed) Metallurgical research laboratory, metals and alloys division—Showa Denko K.K. Ferroalloys, vol 22, pp 14–19

    Google Scholar 

  76. Teguri D, Saito K and Miyauchi Y (2018) Manganese ore pre-reduction using a rotary kiln to manufacture super-low-phosphorus ferromanganese. In: Jones RT, den Hoed P, Erwee MW (eds) Infacon XV: international ferro-alloys congress, Southern African Institute of Mining and Metallurgy, Cape Town, 25–28 Feb 2018

    Google Scholar 

  77. Hofmann W, Vlajcic T, Rath G (1989) The rotary hearth furnace direct-reduction process—a coal based route to substitute electrical energy in ferroalloy. INFACON 5—New Orleans, USA, 1989, pp 185–195

    Google Scholar 

  78. Gasik MI (1992) Manganese. Metallurgya, Moscow, 608 p (in Russian)

    Google Scholar 

  79. Kucher AG (1999) The study of physical and chemical transformations in carbogate manganese concentrates during heat treatment. In: Proceedings of the international conference, Dnipro, 1999, pp 122–126 (in Russian)

    Google Scholar 

  80. Lyashenko VS, Yanchuk EA, Samborskaya LE et al (1985) On the thermal transformations of calcium-manganese carbonates. In: Intensification of electroferroalloy processes and improving product quality. Dnipro 1985, p 25 (in Russian)

    Google Scholar 

  81. Rozhkov AD, Kamkina LV (1982) Behavior of manganese concentrates during heat treatment in various gaseous media. In: Integrated use of raw materials and secondary resources in the electrothermics of ferroalloys: abstracts of the 5th republican scientific and technical conference of ferroalloys of ukraine. Dnepropetrovsk, 1982, p 31 (in Russian)

    Google Scholar 

  82. Kucher AG, Stepanov OA, Mironenko PF, Rozhkov AD (1975) Study of the kinetics of thermal dissociation and reduction of carbonate manganese concentrates. Manganese metallurgy: abstracts of the All-Union meeting, Moscow, 1975, pp 23–25 (in Russian)

    Google Scholar 

  83. Katunin VM, Bogutsky YuM, Shchedrovitsky VYa, Kargina ZP (1985) On the use of carbonate manganese concentrate. Intensification of electroferroalloy processes and improving product quality. Dnipro 1985, p 22 (in Russian)

    Google Scholar 

  84. Grishchenko SG, Kargina ZP, Katunin VM, Kharchenko NI (1985) The involvement in the metallurgical redistribution of carbonate manganese ores. Bull Cent Res Inst Iron Metall 12(992):8–22 (in Russian)

    Google Scholar 

  85. License (1984) The technology of preparation of carbonate manganese ores for electric smelting. Bull Cent Res Inst Iron Metall 11(967):49 (in Russian)

    Google Scholar 

  86. Kucher AG, Shestakovsky OF, Petrov AV et al (1972) Heat treatment and agglomeration of ferromanganese charges before electric furnace melting. Metallurgy and coke chemistry. Kyiv, 1972, no 31, pp 42–44 in Russian)

    Google Scholar 

  87. Kucher AG, Mironenko PF, Khitrik SI, Gavrilov VG (1975) Smelting of carbon ferromanganese on thermally prepared carbonate concentrates. Technical progress of electrometallurgy of manganese and silicon alloys. Dnepropetrovsk, 1975, pp 58–60 in Russian)

    Google Scholar 

  88. Kucher AG, Mironenko PF, Khitrik SI et al (1975) Development of technology for the smelting of manganese alloys using thermally prepared and hot blends. Metallurgy of manganese: abstracts of the All-Union meeting, Moscow, 1975, pp 74–77 (in Russian)

    Google Scholar 

  89. Yaroshenko YuG (2012) Energy- and resource-saving technologies of ferrous metallurgy. In: Yaroshenko YG, Gordon YM, Hodorovskaya IY (eds) Ekateriinburg: UIPC Ltd., 670 p (in Russian)

    Google Scholar 

  90. Theory and technology of electrometallurgy of ferroalloys (1999) Handbook for higher educational establishments. In: Gasik MI, Lyakishev NP (eds) SP intermet engineering, 1999, 764 p (in Russian)

    Google Scholar 

  91. Gladkih VA (2004) Design and equipment of electric steelmaking and ferroalloy production. In: Gladkih VA, Gasik MI, Ovcharuk AN, Proydak YS (eds) Dnepropetrovsk, 736 p (in Russian)

    Google Scholar 

  92. Voroby’ev VP (2009) Electrothermics of reduction processes. In: Voroby’ev VP (ed) Ekaterinburg: UD of RAS, 269 p (in Russian)

    Google Scholar 

  93. Lyakishev NP (1999) Metallurgy of chromium. In: Lyakishev NP, Gasik MI (eds) ELIZ, 582 pp (in Russian)

    Google Scholar 

  94. Zubov VL (2002) Electrometallurgy of ferrosilicon. In: Zubov VL, Gasik MI (eds) Dnepropetrovsk: Sistemnie tehnologii, 704 p (in Russian)

    Google Scholar 

  95. Zhuchkov VI (2007) Technology of manganese ferroalloys. High-carbon ferromanganese. In: Zhuchkov VI, Smirnov LA, Zayko VP, Voronov YI (eds) Ekaterinburg: UD of RAS, vol 1, 414 p (in Russian)

    Google Scholar 

  96. Stalinskiy DV (2012) Cleaning of waste gases of SAF at manganese ferroalloys production. In: Stalinskiy DV, Shvets MN, Shaparenko AV, Lyzhnik GV (eds) Bulletin “Ferrous metallurgy”, vol 3, pp 76–79 (in Russian)

    Google Scholar 

  97. Midander K (2010) Bioaccessibility of ferrochromium and ferrosilicon-chromium particles compared to pure metals and stainless steel—aspects of human exposure. In: Madander K, de Frutos A, Hedberg Y, Darrie G, Odnevall Wallinder I (eds) Proceedings of the twelfth international ferroalloys congress. Sustainable Future. (June 6–9, 2010. Helsinki, Finland), vol I, pp 43–52

    Google Scholar 

  98. Kascheev ID (2012) Basic characteristics of slags and dusts of ferrochromium production. Kascheev ID, Zemlyanoy KG, Dosekenov MS, Zhuchkov VI, Zayakin OV (eds) Proceedings of international congress “fundamental basics of wastes recycling technologies”—Ekaterinburg: UIPC Ltd., pp 101–104

    Google Scholar 

  99. Ishitobi T (2010) Operational improvements of a submerged arc furnace in Kashima works (KF-1) relined in 2006. In: Ishitobi T, Ichihara K, Homma T (eds) Proceedings of the twelfth international ferroalloys congress. Sustainable future. (June 6–9 2010. Helsinki, Finland), vol II, pp 509–515

    Google Scholar 

  100. Velichko BF (1991) Complex technology for recycling of waste slags, dusts and sludge at manganese ferroalloys and electrofluxes smelting. In: Velichko BF, Gasik MI, Koval’ AV, Tkach GD, Poleschuk PN, Rogachev IP, Ovcharuk AN, Grishchenko SG, Ishutin VI. Steel #10:74–78 (in Russian)

    Google Scholar 

  101. Kutsin VS (2013) Mathematical simulation of waste gases and dusts propagation at agglomeration of manganese concentrates and ferroalloys smelting. In: Kutsin VS, Zhadanos AV, Gasik MI (eds) Proceedings of international conference “problems and outlook of mining and metallurgy industries: theory and practice”—Karaganda, HMI, pp 265–268

    Google Scholar 

  102. Dosekenov MS (2014) Analysis of generation and recycling of anthropogeneous wastes of ferrochromium production. In: Dosekenov MS, Samuratov EK, Nurgali NZ (eds) Proceedings of the XV international conference “Modern problems of electrometallurgy of steel”—Chelyabinsk: SUSU vol 2, pp 168–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Gasik .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gasik, M., Dashevskii, V., Bizhanov, A. (2020). Preparation of Charge Materials for Ferroalloys Smelting. In: Ferroalloys. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-57502-1_25

Download citation

Publish with us

Policies and ethics