Skip to main content

Mechanisms of Kidney and Heart Cross-talk in Acute Kidney Injury

  • Chapter
  • First Online:
Textbook of Cardiorenal Medicine
  • 625 Accesses

Abstract

Acute kidney injury (AKI) is related to high mortality and morbidity. Experimental evidence has explained distant organ dysfunctions induced by AKI. It is revealed that the crosstalk between the kidney and heart, which has been known as cardiorenal syndrome, carries an important role in clinical outcomes; However the mechanisms by which AKI causes cardiac injury, are not well understood. Recent studies especially in animal models presented that AKI causes multiple distant organ failures including pulmonary, cardiac, hepatic, and neurologic dysfunction. We herein discussed the effects of AKI on cardiac injury. Different mechanisms are suggested to trigger cardiac injury by AKI including, Induction of systemic inflammation, sympathetic nervous system stimulation, renin-angiotensin-aldosterone system activation, increased oxidative stress, immunomodulation and mitochondrial fragmentation. Exact identification of these pathways will be essential in promoting targeted therapies to improve outcomes in AKI. This chapter updates the recent findings on distant cardiac effect of AKI. We will then discuss the long-term prognosis of cardiac injury triggered by AKI to further emphasize the importance of targeting currently known pathways to further improve the risks of cardiovascular disease in AKI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrier RW. Cardiorenal versus renocardiac syndrome: is there a difference? Nat Clin Pract Nephrol. 2007;3(12):637.

    Article  PubMed  Google Scholar 

  2. Ronco C. Cardiorenal and renocardiac syndromes: clinical disorders in search of a systematic definition. Int J Artif Organs. 2008;31(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  3. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13(6):422–30.

    Article  PubMed  Google Scholar 

  4. Zamora E, Lupon J, Vila J, Urrutia A, de Antonio M, Sanz H, et al. Estimated glomerular filtration rate and prognosis in heart failure: value of the modification of diet in renal disease study-4, chronic kidney disease epidemiology collaboration, and Cockroft-Gault formulas. J Am Coll Cardiol. 2012;59(19):1709–15.

    Article  PubMed  Google Scholar 

  5. Nohria A, Hasselblad V, Stebbins A, Pauly DF, Fonarow GC, Shah M, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51(13):1268–74.

    Article  PubMed  Google Scholar 

  6. Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J. 2005;26(1):11–7.

    Article  PubMed  Google Scholar 

  7. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.

    Article  PubMed  Google Scholar 

  8. Liang KV, Williams AW, Greene EL, Redfield MM. Acute decompensated heart failure and the cardiorenal syndrome. Crit Care Med. 2008;36(1 Suppl):S75–88.

    Article  PubMed  Google Scholar 

  9. Patel J, Heywood JT. Management of the cardiorenal syndrome in heart failure. Curr Cardiol Rep. 2006;8(3):211–6.

    Article  PubMed  Google Scholar 

  10. Ronco C, House AA, Haapio M. Cardiorenal syndrome: refining the definition of a complex symbiosis gone wrong. Intensive Care Med. 2008;34(5):957–62.

    Article  PubMed  Google Scholar 

  11. Silverberg DS, Wexler D, Iaina A, Steinbruch S, Wollman Y, Schwartz D. Anemia, chronic renal disease and congestive heart failure—the cardio renal anemia syndrome: the need for cooperation between cardiologists and nephrologists. Int Urol Nephrol. 2006;38(2):295–310.

    Article  PubMed  Google Scholar 

  12. Kelly KJ. Acute renal failure: much more than a kidney disease. Semin Nephrol. 2006;26(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  13. Rosner MH, Ronco C, Okusa MD. The role of inflammation in the cardio-renal syndrome: a focus on cytokines and inflammatory mediators. Semin Nephrol. 2012;32(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bagshaw SM, Hoste EA, Braam B, Briguori C, Kellum JA, McCullough PA, et al. Cardiorenal syndrome type 3: pathophysiologic and epidemiologic considerations. Contrib Nephrol. 2013;182:137–57.

    Article  PubMed  Google Scholar 

  15. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ratliff BB, Rabadi MM, Vasko R, Yasuda K, Goligorsky MS. Messengers without borders: mediators of systemic inflammatory response in AKI. J Am Soc Nephrol. 2013;24(4):529–36.

    Article  CAS  PubMed  Google Scholar 

  17. Robinson SC, Bowmer CJ, Yates MS. Cardiac function in rats with acute renal failure. J Pharm Pharmacol. 1992;44(12):1007–14.

    Article  CAS  PubMed  Google Scholar 

  18. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14(6):1549–58.

    Article  CAS  PubMed  Google Scholar 

  19. Nath KA, Grande JP, Croatt AJ, Frank E, Caplice NM, Hebbel RP, et al. Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury. Am J Pathol. 2005;166(4):963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001;103(16):2055–9.

    Article  CAS  PubMed  Google Scholar 

  21. Grams ME, Rabb H. The distant organ effects of acute kidney injury. Kidney Int. 2012;81(10):942–8.

    Article  PubMed  Google Scholar 

  22. Joannidis M, Metnitz PG. Epidemiology and natural history of acute renal failure in the ICU. Crit Care Clin. 2005;21(2):239–49.

    Article  PubMed  Google Scholar 

  23. Bagshaw SM, Cruz DN, Aspromonte N, Daliento L, Ronco F, Sheinfeld G, et al. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol Dial Transplant. 2010;25(5):1406–16.

    Article  PubMed  Google Scholar 

  24. Chuasuwan A, Kellum JA. Cardio-renal syndrome type 3: epidemiology, pathophysiology, and treatment. Semin Nephrol. 2012;32(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  25. Liano F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl. 1998;66:S16–24.

    CAS  PubMed  Google Scholar 

  26. Chawla LS, Amdur RL, Shaw AD, Faselis C, Palant CE, Kimmel PL. Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clin J Am Soc Nephrol. 2014;9(3):448–56.

    Article  PubMed  Google Scholar 

  27. Kusaba T, Humphreys BD. Controversies on the origin of proliferating epithelial cells after kidney injury. Pediatr Nephrol. 2014;29(4):673–9.

    Article  PubMed  Google Scholar 

  28. Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest. 2005;115(7):1756–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Romagnani P, Lasagni L, Remuzzi G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol. 2013;9(3):137–46.

    Article  CAS  PubMed  Google Scholar 

  30. Winton FR. The influence of venous pressure on the isolated mammalian kidney. J Physiol. 1931;72(1):49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.

    Article  PubMed  Google Scholar 

  32. Kingma JG Jr, Vincent C, Rouleau JR, Kingma I. Influence of acute renal failure on coronary vasoregulation in dogs. J Am Soc Nephrol. 2006;17(5):1316–24.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Bao X. Effects of uric acid on endothelial dysfunction in early chronic kidney disease and its mechanisms. Eur J Med Res. 2013;18:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sumida M, Doi K, Ogasawara E, Yamashita T, Hamasaki Y, Kariya T, et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015;26(10):2378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ernst E, Hammerschmidt DE, Bagge U, Matrai A, Dormandy JA. Leukocytes and the risk of ischemic diseases. JAMA. 1987;257(17):2318–24.

    Article  CAS  PubMed  Google Scholar 

  36. Forman MB, Virmani R, Puett DW. Mechanisms and therapy of myocardial reperfusion injury. Circulation. 1990;81(3 Suppl):IV69–78.

    CAS  PubMed  Google Scholar 

  37. Ma XL, Lefer DJ, Lefer AM, Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation. 1992;86(3):937–46.

    Article  CAS  PubMed  Google Scholar 

  38. Simpson PJ, Todd RF 3rd, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest. 1988;81(2):624–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weyrich AS, Ma XY, Lefer DJ, Albertine KH, Lefer AM. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest. 1993;91(6):2620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76(2):301–14.

    Article  CAS  PubMed  Google Scholar 

  41. Tokuyama H, Kelly DJ, Zhang Y, Gow RM, Gilbert RE. Macrophage infiltration and cellular proliferation in the non-ischemic kidney and heart following prolonged unilateral renal ischemia. Nephron Physiol. 2007;106(3):p54–62.

    Article  PubMed  Google Scholar 

  42. Burchill L, Velkoska E, Dean RG, Lew RA, Smith AI, Levidiotis V, et al. Acute kidney injury in the rat causes cardiac remodelling and increases angiotensin-converting enzyme 2 expression. Exp Physiol. 2008;93(5):622–30.

    Article  CAS  PubMed  Google Scholar 

  43. Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko VV, Hornsby PJ, et al. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation. 1998;97(14):1382–91.

    Article  CAS  PubMed  Google Scholar 

  44. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation. 1998;97(14):1375–81.

    Article  CAS  PubMed  Google Scholar 

  45. Edmunds NJ, Lal H, Woodward B. Effects of tumour necrosis factor-alpha on left ventricular function in the rat isolated perfused heart: possible mechanisms for a decline in cardiac function. Br J Pharmacol. 1999;126(1):189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Momii H, Shimokawa H, Oyama J, Cheng XS, Nakamura R, Egashira K, et al. Inhibition of adhesion molecules markedly ameliorates cytokine-induced sustained myocardial dysfunction in dogs in vivo. J Mol Cell Cardiol. 1998;30(12):2637–50.

    Article  CAS  PubMed  Google Scholar 

  47. Jackson G, Gibbs CR, Davies MK, Lip GY. ABC of heart failure. Pathophysiology. BMJ. 2000;320(7228):167–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Colucci WS. The effects of norepinephrine on myocardial biology: implications for the therapy of heart failure. Clin Cardiol. 1998;21(12 Suppl 1):I20–4.

    Article  CAS  PubMed  Google Scholar 

  49. Luchner A, Schunkert H. Interactions between the sympathetic nervous system and the cardiac natriuretic peptide system. Cardiovasc Res. 2004;63(3):443–9.

    Article  CAS  PubMed  Google Scholar 

  50. Zukowska-Grojec Z, Neuropeptide Y. A novel sympathetic stress hormone and more. Ann N Y Acad Sci. 1995;771:219–33.

    Article  CAS  PubMed  Google Scholar 

  51. Shah BN, Greaves K. The cardiorenal syndrome: a review. Int J Nephrol. 2010;2011:920195.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Qin F, Patel R, Yan C, Liu W. NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med. 2006;40(2):236–46.

    Article  CAS  PubMed  Google Scholar 

  53. Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S, Welch WJ, et al. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R117–24.

    Article  CAS  PubMed  Google Scholar 

  54. Nakagami H, Takemoto M, Liao JK. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol. 2003;35(7):851–9.

    Article  CAS  PubMed  Google Scholar 

  55. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation. 2000;101(10):1130–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52(1):11–34.

    CAS  PubMed  Google Scholar 

  58. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol. 1997;29(3):859–70.

    Article  CAS  PubMed  Google Scholar 

  59. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation. 1990;82(5):1730–6.

    Article  CAS  PubMed  Google Scholar 

  60. Tsutamoto T, Sakai H, Tanaka T, Fujii M, Yamamoto T, Wada A, et al. Comparison of active renin concentration and plasma renin activity as a prognostic predictor in patients with heart failure. Circ J. 2007;71(6):915–21.

    Article  CAS  PubMed  Google Scholar 

  61. Muhlestein JB, May HT, Bair TL, Prescott MF, Horne BD, White R, et al. Relation of elevated plasma renin activity at baseline to cardiac events in patients with angiographically proven coronary artery disease. Am J Cardiol. 2010;106(6):764–9.

    Article  CAS  PubMed  Google Scholar 

  62. Seed A, Gardner R, McMurray J, Hillier C, Murdoch D, MacFadyen R, et al. Neurohumoral effects of the new orally active renin inhibitor, aliskiren, in chronic heart failure. Eur J Heart Fail. 2007;9(11):1120–7.

    Article  CAS  PubMed  Google Scholar 

  63. van Esch JH, Moltzer E, van Veghel R, Garrelds IM, Leijten F, Bouhuizen AM, et al. Beneficial cardiac effects of the renin inhibitor aliskiren in spontaneously hypertensive rats. J Hypertens. 2010;28(10):2145–55.

    Article  PubMed  CAS  Google Scholar 

  64. McMurray JJ, Pitt B, Latini R, Maggioni AP, Solomon SD, Keefe DL, et al. Effects of the oral direct renin inhibitor aliskiren in patients with symptomatic heart failure. Circ Heart Fail. 2008;1(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  65. Danser AH. The increase in renin during renin inhibition: does it result in harmful effects by the (pro)renin receptor? Hypertens Res. 2010;33(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  66. Prabhu SD. Cytokine-induced modulation of cardiac function. Circ Res. 2004;95(12):1140–53.

    Article  CAS  PubMed  Google Scholar 

  67. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73, Table of Contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shalhoub J, Falck-Hansen MA, Davies AH, Monaco C. Innate immunity and monocyte-macrophage activation in atherosclerosis. J Inflamm (Lond). 2011;8:9.

    Article  CAS  Google Scholar 

  69. Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury. Nephron Exp Nephrol. 2008;109(4):e102–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Virzi G, Day S, de Cal M, Vescovo G, Ronco C. Heart-kidney crosstalk and role of humoral signaling in critical illness. Crit Care (London, England). 2014;18(1):201.

    Article  Google Scholar 

  71. Soos TJ, Sims TN, Barisoni L, Lin K, Littman DR, Dustin ML, et al. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int. 2006;70(3):591–6.

    Article  CAS  PubMed  Google Scholar 

  72. Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 2008;74(12):1526–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion injury. Semin Nephrol. 2010;30(3):268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int. 2007;71(7):619–28.

    Article  CAS  PubMed  Google Scholar 

  75. Li L, Huang L, Vergis AL, Ye H, Bajwa A, Narayan V, et al. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J Clin Invest. 2010;120(1):331–42.

    Article  CAS  PubMed  Google Scholar 

  76. Akcay A, Nguyen Q, Edelstein CL. Mediators of inflammation in acute kidney injury. Mediat Inflamm. 2009;2009:137072.

    Article  CAS  Google Scholar 

  77. Li L, Huang L, Sung SS, Lobo PI, Brown MG, Gregg RK, et al. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J Immunol. 2007;178(9):5899–911.

    Article  CAS  PubMed  Google Scholar 

  78. Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest. 1996;97(4):1056–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Givertz MM, Colucci WS. New targets for heart-failure therapy: endothelin, inflammatory cytokines, and oxidative stress. Lancet. 1998;352(Suppl 1):SI34–8.

    Article  PubMed  Google Scholar 

  80. Kapadia SR. Cytokines and heart failure. Cardiol Rev. 1999;7(4):196–206.

    Article  CAS  PubMed  Google Scholar 

  81. Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest. 2009;119(5):1275–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, et al. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J. 2014;28(1):316–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Germain M, Mathai JP, McBride HM, Shore GC. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J. 2005;24(8):1546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K, Ishihara N. Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome C. Proc Natl Acad Sci U S A. 2013;110(29):11863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515–25.

    Article  CAS  PubMed  Google Scholar 

  86. Kim CS. Pharmacologic management of the cardio-renal syndrome. Electrolyte Blood Press. 2013;11(1):17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333(7565):420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bagshaw SM, Delaney A, Haase M, Ghali WA, Bellomo R. Loop diuretics in the management of acute renal failure: a systematic review and meta-analysis. Crit Care Resusc. 2007;9(1):60–8.

    PubMed  Google Scholar 

  89. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.

    Article  PubMed  Google Scholar 

  90. Schmieder RE, Delles C, Mimran A, Fauvel JP, Ruilope LM. Impact of telmisartan versus ramipril on renal endothelial function in patients with hypertension and type 2 diabetes. Diabetes Care. 2007;30(6):1351–6.

    Article  CAS  PubMed  Google Scholar 

  91. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940–6.

    Article  CAS  PubMed  Google Scholar 

  92. Veelken R, Vogel EM, Hilgers K, Amann K, Hartner A, Sass G, et al. Autonomic renal denervation ameliorates experimental glomerulonephritis. J Am Soc Nephrol. 2008;19(7):1371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. James MT, Ghali WA, Knudtson ML, Ravani P, Tonelli M, Faris P, et al. Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation. 2011;123(4):409–16.

    Article  PubMed  Google Scholar 

  94. Li PK, Burdmann EA, Mehta RL. World Kidney Day 2013: acute kidney injury-global health alert. Am J Kidney Dis. 2013;61(3):359–63.

    Article  PubMed  Google Scholar 

  95. Grams ME, Plantinga LC, Hedgeman E, Saran R, Myers GL, Williams DE, et al. Validation of CKD and related conditions in existing data sets: a systematic review. Am J Kidney Dis. 2011;57(1):44–54.

    Article  PubMed  Google Scholar 

  96. Wu VC, Wu CH, Huang TM, Wang CY, Lai CF, Shiao CC, et al. Long-term risk of coronary events after AKI. J Am Soc Nephrol. 2014;25(3):595–605.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Grundy SM. Diabetes and coronary risk equivalency: what does it mean? Diabetes Care. 2006;29(2):457–60.

    Article  PubMed  Google Scholar 

  98. Lo LJ, Go AS, Chertow GM, McCulloch CE, Fan D, Ordonez JD, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76(8):893–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bucaloiu ID, Kirchner HL, Norfolk ER, Hartle JE 2nd, Perkins RM. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 2012;81(5):477–85.

    Article  PubMed  Google Scholar 

  100. Wald R, Quinn RR, Luo J, Li P, Scales DC, Mamdani MM, et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA. 2009;302(11):1179–85.

    Article  CAS  PubMed  Google Scholar 

  101. Ishani A, Nelson D, Clothier B, Schult T, Nugent S, Greer N, et al. The magnitude of acute serum creatinine increase after cardiac surgery and the risk of chronic kidney disease, progression of kidney disease, and death. Arch Intern Med. 2011;171(3):226–33.

    Article  PubMed  Google Scholar 

  102. Muntner P, He J, Hamm L, Loria C, Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13(3):745–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Okusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pourafshar, N., Okusa, M.D. (2021). Mechanisms of Kidney and Heart Cross-talk in Acute Kidney Injury. In: McCullough, P.A., Ronco, C. (eds) Textbook of Cardiorenal Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-57460-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57460-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57459-8

  • Online ISBN: 978-3-030-57460-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics