Skip to main content

Metamodeling and Machine Learning

  • Chapter
  • First Online:
Aging, Shaking, and Cracking of Infrastructures

Abstract

A metamodel, or surrogate model, is a model of a model. Metamodeling refers to a process of generating such metamodels which is based on analysis, construction and development of the frames, rules, constraints, models and theories applicable and useful for modeling a predefined class of problems. On the other hand, machine learning is an application of artificial intelligence that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. This chapter provides a review on different design of experiment techniques, as well as various machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Allaix, V. Carbone, An improvement of the response surface method. Struct. Saf. 33(2), 165–172 (2011)

    Article  Google Scholar 

  2. M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non intrusive approach by regression. Eur. J. Comput. Mech. 15(1–3), 81–92 (2006)

    Article  MATH  Google Scholar 

  3. C. Bishop, Pattern recognition. Mach. Learn. 128 (2006)

    Google Scholar 

  4. G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Prob. Eng. Mech. 25(2), 183–197 (2010)

    Article  Google Scholar 

  5. G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Box, D. Behnken, Some new three level designs for the study of quantitative variables. Technometrics 2(4), 455–475 (1960)

    Article  MathSciNet  Google Scholar 

  7. G. Box, N. Draper, Empirical Model-Building and Response Surfaces, vol. 424 (Wiley New York, 1987)

    Google Scholar 

  8. L. Breiman, Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  MATH  Google Scholar 

  9. M. Cavazzuti, Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics (Springer, Berlin, 2012)

    MATH  Google Scholar 

  10. T. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2016), pp. 785–794

    Google Scholar 

  11. T. Chen, T. He, M. Benesty, Xgboost: extreme gradient boosting, in R Package Version 0.4-2 (2015), pp. 1–4

    Google Scholar 

  12. S. Ding et al., Extreme learning machine: algorithm, theory and applications. Artif. Intell. Rev. 44(1), 103–115 (2015)

    Article  Google Scholar 

  13. B. Efron et al., Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Esposito et al., A comparative analysis of methods for pruning decision trees. IEEE Trans. Pattern Anal. Mach. Intell. 19(5), 476–491 (1997)

    Article  Google Scholar 

  15. N. Fajraoui, S. Marelli, B. Sudret, Sequential design of experiment for sparse polynomial chaos expansions. SIAM/ASA J. Uncertainty Quantif. 5(1), 1061–1085 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Fan et al., Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China. Energy Convers. Manag. 164, 102–111 (2018)

    Article  Google Scholar 

  17. L. Faravelli, Response-surface approach for reliability analysis. J. Eng. Mech. 115(12), 2763–2781 (1989)

    Google Scholar 

  18. J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning, vol. 1 (Springer, New York, 2001)

    MATH  Google Scholar 

  19. J. Friedman, Multivariate adaptive regression splines. Ann. Stat. 1–67 (1991)

    Google Scholar 

  20. J. Friedman, C. Roosen, An introduction to multivariate adaptive regression splines. Stat. Methods Med. Res. 4(3), 197–217 (1995)

    Article  Google Scholar 

  21. N. Gershenfeld, N. Gershenfeld, The Nature of Mathematical Modeling (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  22. R.G. Ghanem, P.D. Spanos, Stochastic finite element method: response statistics, in Stochastic Finite Elements: A Spectral Approach (Springer, Berlin, 1991), pp. 101–119

    Book  Google Scholar 

  23. R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach (Dover Publications, New York, 2003)

    MATH  Google Scholar 

  24. M. Hariri-Ardebili, MCS-based response surface metamodels and optimal design of experiments for gravity dams. Struct. Infrastruct. Eng. 14(12), 1641–1663 (2018)

    Article  Google Scholar 

  25. M. Hariri-Ardebili, S. Barak, A series of forecasting models for seismic evaluation of dams based on ground motion meta-features. Eng. Struct. 203, 109657 (2020)

    Article  Google Scholar 

  26. M. Hariri-Ardebili, P Boodagh, Taguchi design-based seismic reliability analysis of geostructures, in Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards (2018), pp. 1–19

    Google Scholar 

  27. M. Hariri-Ardebili, B. Sudret, Polynomial chaos expansion for uncertainty quantification of dam engineering problems. Eng. Struct. 203, 109631 (2020)

    Article  Google Scholar 

  28. G. Huang, Q. Zhu, C. Siew, Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  29. G. Huang et al., Trends in extreme learning machines: a review. Neural Netw. 61, 32–48 (2015)

    Article  MATH  Google Scholar 

  30. A.I. Khuri, S. Mukhopadhyay, Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2(2), 128–149 (2010)

    Article  Google Scholar 

  31. M. Kuhn, K. Johnson, Applied Predictive Modeling, vol. 26 (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  32. R. Kumar, Decision tree for the weather forecasting. Int. J. Comput. Appl. 76(2), 0975–8887 (2013)

    Google Scholar 

  33. S. Marelli, B. Sudret, UQLab: a framework for uncertainty quantification in Matlab, in Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management (2014), pp. 2554–2563

    Google Scholar 

  34. S. Marelli, B. Sudret, Report UQLab-V0.9-104: UQLab User Manual–Polynomial Chaos Expansions. Tech. rep. Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, 0.9-104 edition, 2015

    Google Scholar 

  35. K. Mehrotra, C. Mohan, S. Ranka, Elements of Artificial Neural Networks (MIT Press, Cambridge, 1997)

    MATH  Google Scholar 

  36. S. Murthy, Automatic construction of decision trees from data: a multi-disciplinary survey. Data Mining Knowl. Discovery (2)(4), 345–389 (1998)

    Google Scholar 

  37. A. Natekin, A. Knoll, Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)

    Article  Google Scholar 

  38. R. Plackett, J. Burman, The design of optimum multifactorial experiments. Biometrika 33(4), 305–325 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Pourkamali-Anaraki, S. Becker, A randomized approach to efficient kernel clustering, in IEEE Global Conference on Signal and Information Processing (2016), pp. 207–211

    Google Scholar 

  40. F. Pourkamali-Anaraki, S. Hughes, Kernel compressive sensing, in IEEE International Conference on Image Processing. 2013, pp. 494–498

    Google Scholar 

  41. K. Priddy, P. Keller, Artificial Neural Networks: An Introduction, vol. 68. (SPIE Press, 2005)

    Google Scholar 

  42. R Statistical, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, 2015). https://www.R-project.org

  43. T. Ragg, H. Braun, H. Landsberg, A comparative study of neural network optimization techniques. Artificial Neural Nets and Genetic Algorithms (Springer, Berlin, 1998), pp. 341–345

    Google Scholar 

  44. M. Rajashekhar, B. Ellingwood, A new look at the response surface approach for reliability analysis. Struct. Saf. 12(3), 205–220 (1993)

    Article  Google Scholar 

  45. M. Ramu, R. Prabhu, Metamodel based analysis and its applications: a review. Acta Tech. Corviniensis-Bull. Eng. 6(2), 25 (2013)

    Google Scholar 

  46. C. Rasmussen, H. Nickisch, Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 11, 3011–3015 (2010)

    MathSciNet  MATH  Google Scholar 

  47. C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning Cambridge (MIT Press, Cambridge, 2006)

    MATH  Google Scholar 

  48. G. Rizzo et al., Tree-based models for inductive classification on the web of data. J. Web Semant. 45, 1–22 (2017)

    Article  Google Scholar 

  49. N. Roussouly, F. Petitjean, M. Salaun, A new adaptive response surface method for reliability analysis. Probab. Eng. Mech. 32, 103–115 (2013)

    Article  Google Scholar 

  50. B. Schölkopf, A. Smola, F. Bach, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, Cambridge, 2002)

    Google Scholar 

  51. T.W. Simpson et al., Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17(2), 129–150 (2001)

    Article  MATH  Google Scholar 

  52. B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models—contributions to structural reliability and stochastic spectral methods, in Habilitationa diriger des recherches, Université Blaise Pascal, Clermont-Ferrand, France (2007), p. 18

    Google Scholar 

  53. B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  54. K. Tanioka, H. Yadohisa, Effect of data standardization on the result of k-means clustering, in Challenges at the Interface of Data Analysis, Computer Science, and Optimization (Springer, Berlin, 2012), pp. 59–67

    Book  Google Scholar 

  55. M. Thakur, D. Kumar, A hybrid financial trading support system using multi-category classifiers and random forest. Appl. Soft Comput. 67, 337–349 (2018)

    Article  Google Scholar 

  56. L Torlay et al., Machine learning–XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 4(3), 159 (2017)

    Google Scholar 

  57. H. Trevor, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, Berlin, 2011)

    MATH  Google Scholar 

  58. G. Wang, S. Shan, Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2007)

    Article  Google Scholar 

  59. Z. Wang et al., Random Forest based hourly building energy prediction. Energy Build 171, 11–25 (2018)

    Article  Google Scholar 

  60. S. Wong, R. Hobbs, C. Onof, An adaptive response surface method for reliability analysis of structures with multiple loading sequences. Struct. Saf. 27(4), 287–308 (2005)

    Article  Google Scholar 

  61. X. Wu et al., Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  62. D. Xiu, G. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  63. B. Youn, K. Choi, A new response surface methodology for reliability-based design optimization. Comput. Struct. 82(2), 241–256 (2004)

    Article  Google Scholar 

  64. D. Zhang et al., Time-dependent reliability analysis through response surface method. J. Mech. Des. 139(4), 041404 (2017)

    Google Scholar 

  65. G. Zhang, B. Patuwo, M. Hu, Forecasting with artificial neural networks: the state of the art. Int. J. Forecasting 14(1), 35–62 (1998)

    Article  Google Scholar 

  66. W. Zhao, Z. Qiu, An efficient response surface method and its application to structural reliability and reliability-based optimization. Finite Elem. Anal. Des. 67, 34–42 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saouma, V.E., Hariri-Ardebili, M.A. (2021). Metamodeling and Machine Learning. In: Aging, Shaking, and Cracking of Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-57434-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57434-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57433-8

  • Online ISBN: 978-3-030-57434-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics