Skip to main content

Protein Interfacial Instability of Mixing and Lyophilization During Drug Product Manufacturing Process Scale-Up and Tech Transfer

  • Chapter
  • First Online:
Protein Instability at Interfaces During Drug Product Development

Abstract

Biotherapeutic product manufacturing is a complicated process that includes various unit operations, such as freeze and thaw, compounding, filtration, filling, lyophilization, inspection, packaging, storage, and transportation. During process steps in those unit operations, protein molecules may encounter stresses like shear stress and interfacial stress. These stresses could potentially negatively impact the drug product quality attributes, including formation of protein aggregates, formation of particles, or loss of protein due to adsorptions at the interface. Therefore, it is important to have a clear understanding of protein interfacial instability during drug product manufacturing. In this chapter, we will discuss in more details about various stresses that proteins encountered in the mixing and lyophilization unit operations, the relationship between the interfacial stress and protein stability, and explore strategies and best practices in order to evaluate and minimize the interfacial stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Antibody-drug conjugate

BSA:

Bovine serum albumin

CFD:

Computation fluid dynamic

CMC:

Critical micelle concentration

CMO:

Contract Manufacturing Organization

DSC:

Differential scanning calorimetry

ESCA:

Electron spectroscopy for chemical analysis

GMP:

Good manufacturing practice

HCl:

Hydrochloric acid

hGH:

Human growth hormone

IgG:

Immunoglobulin

KGF:

Keratinocyte growth factor

LDH:

Lactate dehydrogenase

PAR:

Proven acceptable range

PGK:

Phosphoglycerate kinase

rhGH:

Recombinant human growth hormone

SSA:

Specific surface area

SUT:

Single-use technology

w/v:

Weight/volume

XPS:

X-ray photoelectron spectroscopy

References

  1. Li J, Krause ME, Chen X, Cheng Y, Dai W, Hill JJ, Huang M, Jordan S, LaCasse D, Narhi L, Shalaev E, Shieh IC, Thomas JC, Tu R, Zheng S, Zhu L. Interfacial stress in the development of biologics: fundamental understanding, current practice, and future perspective. AAPS J. 2019;21(3):44. https://doi.org/10.1208/s12248-019-0312-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thomas CR, Geer D. Effects of shear on proteins in solution. Biotechnol Lett. 2011;33(3):443–56. https://doi.org/10.1007/s10529-010-0469-4.

    Article  CAS  PubMed  Google Scholar 

  3. Lin GLPJ, Kim DH, Carlson M, Riguero V, Kim YJ, Buff JS, Fuller GG. Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions. Soft Matter. 2016;12(14):3293–302.

    Article  CAS  Google Scholar 

  4. Tavakoli-Keshe R, Phillips JJ, Turner R, Bracewell DG. Understanding the relationship between biotherapeutic protein stability and solid–liquid interfacial shear in constant region mutants of IgG1 and IgG4. J Pharm Sci. 2014;103:437–44.

    Article  CAS  Google Scholar 

  5. Clarkson JR, Cui ZF, Darton RC. Protein denaturation in foam. J Colloid Interface Sci. 1999;215(2):323–32.

    Article  CAS  Google Scholar 

  6. Maldonato-Valderrama J, Martin-Molina A, Martín-Rodriguez A, Cabrerizo-Vílchez MA, Gálvez-Ruiz MJ, Langevin D. Surface properties and foam stability of protein/surfactant mixtures: theory and experiment. J Phys Chem C. 2007;111:2715–23.

    Article  Google Scholar 

  7. Otzen D. Protein–surfactant interactions: a tale of many states. Biochim Biophys Acta. 2011;1814:562–91.

    Article  CAS  Google Scholar 

  8. Rullier B, Axelos MAV, Langevin D, Novales B. β-Lactoglobulin aggregates in foam films: effect of the concentration and size of the protein aggregates. J Colloid Interf Sci. 2010;343:330–7.

    Article  CAS  Google Scholar 

  9. Wang W, Ignatius AA, Thakkar SV. Impact of residual impurities and contaminants on protein stability. J Pharm Sci. 2014;103(5):1315–30.

    Article  CAS  Google Scholar 

  10. Saba G, CKDB, Prajnaparamita D. Evaluating the role of the air-solution interface on the mechanism of subvisible particle formation caused by mechanical agitation for an IgG1 mAb. J Pharm Sci. 2016;105(5):1643–56.

    Article  Google Scholar 

  11. Kalonia CK, HF, Curtis JE, Raman S, Miller MA, Hudson SD. Protein adsorption and layer formation at the stainless steel-solution interface mediates shear-induced particle formation for an IgG1 monoclonal antibody. Mol Pharm. 2018;15(3):1319–31.

    Article  CAS  Google Scholar 

  12. Wang W, Roberts CJ. Protein aggregation – mechanisms, detection, and control. Int J Pharm. 2018;550:251–68.

    Article  CAS  Google Scholar 

  13. Machado MB, Kresta SM. Evolution of bench scale mixing devices: getting reliable scale-up data. Am Pharm Review. 2017;20(6):106–11.

    Google Scholar 

  14. Nesta D, Nanda T, He J, Haas M, Shpungin S, Rusanov I, Sweder R, Brisbane C. Aggregation from shear stress and surface interaction: molecule-specific or universal phenomenon? Bioproc Int. 2017;15:30–9.

    Google Scholar 

  15. Kukura J, Arratia PC, Szalia ES, Bittorf KJ, Muzzio FJ. Understanding pharmaceutical flows. Pharm Technol. 1999;26:48–72.

    Google Scholar 

  16. Sahu AK, Kumar P, Patwardhan AW, Joshi JB. CFD modelling and mixing in stirred tanks. Chem Eng Sci. 1999;54:2285–93.

    Article  CAS  Google Scholar 

  17. Marchisio DL, Barresi AA. CFD simulation of mixing and reaction: the relevance of the micro-mixing model. Chem Eng Sci. 2003;58:3579–87.

    Article  CAS  Google Scholar 

  18. Maa Y-F, Hus CC. Protein denaturation by combined effect of shear and air-liquid Interface. Biotechnol Bioeng. 1997;54(6):503–12.

    Article  CAS  Google Scholar 

  19. Castellanos MM, Pathak JA, Colby RH. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions. Soft Matter. 2014;10:122–31.

    Article  CAS  Google Scholar 

  20. Baldursdottir SG, Fullerton MS, Nielsen SH, Jorgensen L. Adsorption of proteins at the oil/water interface—observation of protein adsorption by interfacial shear stress measurements. Colloid Surface B. 2010;79:41–6.

    Article  CAS  Google Scholar 

  21. Dixit N, Zheng DL, Kalonia DS. Application of maximum bubble pressure surface tensiometer to study protein–surfactant interactions. Int J Pharm. 2012;439:317–23.

    Article  CAS  Google Scholar 

  22. Sethuraman A, Belfort G. Protein structural perturbation and aggregation on homogeneous surfaces. Biophys J. 2005;88:1322–33.

    Article  CAS  Google Scholar 

  23. Shieh IC, Patel AR. Predicting the agitation-induced aggregation of monoclonal antibodies using surface tensiometry. Mol Pharm. 2015;12(9):3184–93. https://doi.org/10.1021/acs.molpharmaceut.5b00089.

    Article  CAS  PubMed  Google Scholar 

  24. Chang L, Shepherd D, Sun J, Ouellette D, Grant KL, Tang X, Pikal MJ. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci. 2005;94(7):1427–44.

    Article  CAS  Google Scholar 

  25. Tang X, Pikal MJ. The effect of stabilizers and denaturants on the cold denaturation temperatures of proteins and implications for freeze-drying. Pharm Res. 2005;22(7):1167–75.

    Article  CAS  Google Scholar 

  26. Gabellieri E, Strambini GB. Perturbation of protein tertiary structure in frozen solutions revealed by 1-anilino-8-naphthalene sulfonate fluorescence. Biophys J. 2003;85(5):3214–20.

    Article  CAS  Google Scholar 

  27. Archer D (1992) Thermodynamic properties of the NaCl+H2O system. II. thermodynamic properties of NaCl(aq), NaCl·2H2(cr), and phase equilibria. vol 21

    Google Scholar 

  28. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12(5):505–23.

    Article  CAS  Google Scholar 

  29. Bhatnagar BS, Pikal MJ, Bogner RH. Study of the individual contributions of ice formation and freeze-concentration on isothermal stability of lactate dehydrogenase during freezing. J Pharm Sci. 2008;97(2):798–814. https://doi.org/10.1002/jps.21017.

    Article  CAS  PubMed  Google Scholar 

  30. Gómez G, Pikal MJ, Rodríguez-Hornedo N. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions. Pharm Res. 2001;18(1):90–7. https://doi.org/10.1023/a:1011082911917.

    Article  PubMed  Google Scholar 

  31. Kolhe P, Amend E, Singh SK. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog. 2010;26(3):727–33. https://doi.org/10.1002/btpr.377.

    Article  CAS  PubMed  Google Scholar 

  32. Anchordoquy TJ, Carpenter JF. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state. Arch Biochem Biophys. 1996;332(2):231–8.

    Article  CAS  Google Scholar 

  33. Luthra S, Obert J-P, Kalonia Devendra S, Pikal Michael J. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer. J Pharm Sci. 2007;96(1):61–70.

    Article  CAS  Google Scholar 

  34. Wang DQ, Hey JM, Nail SL. Effect of collapse on the stability of freeze-dried recombinant factor VIII and alpha-amylase. J Pharm Sci. 2004;93(5):1253–63.

    Article  CAS  Google Scholar 

  35. Abdul-Fattah AM, Kalcinia DS, Pikal MI. The challenge of drying method selection for protein pharmaceuticals: product quality implications. J Pharm Sci. 2007;96(8):1886–916. https://doi.org/10.1002/jps.20842.

    Article  CAS  PubMed  Google Scholar 

  36. Faeldt P, Bergenstahl B. The surface composition of spray-dried protein-lactose powders. Colloids Surf A Physicochem Eng Aspects. 1994;90:183–90.

    Article  CAS  Google Scholar 

  37. Abdul-Fattah AM, Truong-Le V, Yee L, Nguyen L, Kalonia DS, Cicerone MT, Pikal MJ. Drying-induced variations in physico-chemical properties of amorphous pharmaceuticals and their impact on stability (I): stability of a monoclonal antibody. J Pharm Sci. 2007;96(8):1983–2008. https://doi.org/10.1002/jps.20859.

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y, Grobelny P, Von AA, Knudson K, Pikal M, Carpenter JF, Randolph TW. Protein quantity on the air–solid interface determines degradation rates of human growth hormone in lyophilized samples. J Pharm Sci. 2014;103(5):1356–66.

    Article  CAS  Google Scholar 

  39. Jones LS, Randolph TW, Kohnert U, Papadimitriou A, Winter G, Hagmann ML, Manning MC, Carpenter JF. The effects of tween 20 and sucrose on the stability of anti-L-selectin during lyophilization and reconstitution. J Pharm Sci. 2001;90(10):1466–77.

    Article  CAS  Google Scholar 

  40. Zhang MZ, Wen J, Arakawa T, Prestrelski SJ. A new strategy for enhancing the stability of lyophilized protein: the effect of the reconstitution medium on keratinocyte growth factor. Pharm Res. 1995;12(10):1447–52.

    Article  CAS  Google Scholar 

  41. Zhang MZ, Pikal K, Nguyen T, Arakawa T, Prestrelski SJ. The effect of the reconstitution medium on aggregation of lyophilized recombinant interleukin-2 and ribonuclease A. Pharm Res. 1996;13(4):643–6.

    Article  CAS  Google Scholar 

  42. Fayos R, Pons M, Millet O. On the origin of the thermostabilization of proteins induced by sodium phosphate. J Am Chem Soc. 2005;127(27):9690–1. https://doi.org/10.1021/ja051352e.

    Article  CAS  PubMed  Google Scholar 

  43. Katayama DS, Nayar R, Chou DK, Valente JJ, Cooper J, Henry CS, Vander Velde DG, Villarete L, Liu CP, Manning MC. Effect of buffer species on the thermally induced aggregation of interferon-tau. J Pharm Sci. 2006;95(6):1212–26. https://doi.org/10.1002/jps.20471.

    Article  CAS  PubMed  Google Scholar 

  44. Kendrick BS, Chang BS, Arakawa T, Peterson B, Randolph TW, Manning MC, Carpenter JF. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state. Proc Natl Acad Sci U S A. 1997;94(22):11917–22.

    Article  CAS  Google Scholar 

  45. Cleland JL, Lam X, Kendrick B, Yang J, Yang TH, Overcashier D, Brooks D, Hsu C, Carpenter JF. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci. 2001;90(3):310–21.

    Article  CAS  Google Scholar 

  46. Wang BQ, Tchessalov S, Cicerone MT, Warne NW, Pikal MJ. Impact of sucrose level on storage stability of proteins in freeze-dried solids: II. Correlation of aggregation rate with protein structure and molecular mobility. J Pharm Sci. 2009;98(9):3145–66. https://doi.org/10.1002/jps.21622.

    Article  CAS  PubMed  Google Scholar 

  47. Wang BQ, Tchessalov S, Warne NW, Pikal MJ. Impact of sucrose level on storage stability of proteins in freeze-dried solids: I. correlation of protein-sugar interaction with native structure preservation. J Pharm Sci. 2009;98(9):3131–44. https://doi.org/10.1002/jps.21621.

    Article  CAS  PubMed  Google Scholar 

  48. Webb SD, Golledge SL, Cleland JL, Carpenter JF, Randolph TW. Surface adsorption of recombinant human interferon-gamma in lyophilized and spray-lyophilized formulations. J Pharm Sci. 2002;91(6):1474–87. https://doi.org/10.1002/jps.10135.

    Article  CAS  PubMed  Google Scholar 

  49. Sarciaux JM, Mansour S, Hageman MJ, Nail SL. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying. J Pharm Sci. 1999;88(12):1354–61.

    Article  CAS  Google Scholar 

  50. Nema S, Avis KE. Freeze-thaw studies of a model protein, lactate dehydrogenase, in the presence of cryoprotectants. J Parenter Sci Technol. 1993;47(2):76–83.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Shi, W., Chen, X. (2021). Protein Interfacial Instability of Mixing and Lyophilization During Drug Product Manufacturing Process Scale-Up and Tech Transfer. In: Li, J., Krause, M.E., Tu, R. (eds) Protein Instability at Interfaces During Drug Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-57177-1_9

Download citation

Publish with us

Policies and ethics