Skip to main content

Immune-Related Adverse Events with Other Cancer Immunotherapies

  • Chapter
  • First Online:
Rheumatic Diseases and Syndromes Induced by Cancer Immunotherapy

Abstract

In addition to immune checkpoint inhibitors, several other forms of immunotherapy have been used to treat malignancies, some for decades. Furthermore, there have been other advances in the field with novel treatments that target the immune system in different ways, including adoptive cell transfer, cytokine therapy, and vaccines. In this chapter, we review the common immune-related adverse events associated with anti-neoplastic immunotherapy. We also discuss the severity of patients’ symptoms and current treatments available to address these adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benmebarek MR, et al. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 2019;20(6):1–21.

    Google Scholar 

  2. Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant. 2019;25(4):e123–7.

    Article  CAS  Google Scholar 

  3. Cao G, Lei L, Zhu X. Efficiency and safety of autologous chimeric antigen receptor T-cells therapy used for patients with lymphoma: a systematic review and meta-analysis. Medicine (Baltimore). 2019;98(42):e17506.

    Article  CAS  Google Scholar 

  4. Lee DW, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–38.

    Article  CAS  Google Scholar 

  5. Neelapu SS, et al. Chimeric antigen receptor T-cell therapy – assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62.

    Article  CAS  Google Scholar 

  6. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30.

    Article  CAS  Google Scholar 

  7. Mestermann K, G.T., Weber J, Rydzek J, Frenz S, Nerreter T, Mades A, Sadelain M, Einsele H, Hudecek M, The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR-T cells. Sci Transl Med. 2019;11(499):1–11.

    Google Scholar 

  8. Murthy H, et al. Cytokine release syndrome: current perspectives. Immunotargets Ther. 2019;8:43–52.

    Article  CAS  Google Scholar 

  9. Giavridis T, et al. CAR-T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8.

    Article  CAS  Google Scholar 

  10. Gust J, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19.

    Article  CAS  Google Scholar 

  11. Gauthier J, Turtle CJ. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy. Curr Res Transl Med. 2018;66(2):50–2.

    Article  Google Scholar 

  12. Kirkwood J. Cancer immunotherapy: the interferon-alpha experience. Semin Oncol. 2002;29(3) Suppl 7:18–26.

    Article  CAS  Google Scholar 

  13. Muller L, Aigner P, Stoiber D, Type I. Interferons and natural killer cell regulation in cancer. Front Immunol. 2017;8:304.

    PubMed  PubMed Central  Google Scholar 

  14. Kotredes KP, Gamero AM. Interferons as inducers of apoptosis in malignant cells. J Interf Cytokine Res. 2013;33(4):162–70.

    Article  CAS  Google Scholar 

  15. Petri M, et al. Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genet. 2019;12(1):4.

    Google Scholar 

  16. Morand EF, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2020;382(3):211–21.

    Article  CAS  Google Scholar 

  17. Noda K, et al. Induction of antinuclear antibody after interferon therapy in patients with type-C chronic hepatitis: its relation to the efficacy of therapy. Scand J Gastroenterol. 1996;31(7):716–22.

    Article  CAS  Google Scholar 

  18. Ronnblom LE, Alm G, Oberg KE. Autoimmunity after alpha-interferon therapy for malignant carcinoid tumors. Ann Intern Med. 1991;115(3):178–83.

    Article  CAS  Google Scholar 

  19. Gota C, Calabrese L. Induction of clinical autoimmune disease by therapeutic interferon-alpha. Autoimmunity. 2003;36(8):511–8.

    Article  Google Scholar 

  20. Conlon KC, Urba W, Smith JW II, Steis RG, Longo DL, Clark JW. Exacerbation of symptoms of autoimmune disease in patients receiving alpha-interferon therapy. Cancer. 1990;65(10):2237–42.

    Article  CAS  Google Scholar 

  21. Niewold TB, Swedler WI. Systemic lupus erythematosus arising during interferon-alpha therapy for cryoglobulinemic vasculitis associated with hepatitis C. Clin Rheumatol. 2005;24(2):178–81.

    Article  Google Scholar 

  22. Dumoulin FL, Leifeld L, Sauerbruch T, Spengler U. Autoimmunity induced by interferon-alpha therapy for chronic viral hepaitis. Biomed Pharmacother. 1999;53:242–54.

    Article  CAS  Google Scholar 

  23. Ho V, McLean A, Terry S. Severe systemic lupus erythematosus induced by antiviral treatment for hepatitis C. J Clin Rheumatol. 2008;14(3):166–8.

    Article  Google Scholar 

  24. Nesher G, Ruchlemer R. Alpha-interferon-induced arthritis: clinical presentation, treatment, and prevention. Semin Arthritis Rheum. 1998;27(6):360–5.

    Article  CAS  Google Scholar 

  25. Stuckert JJS II, et al. Interferon alfa-induced autoimmunity and serum S100 levels as predictive and prognostic biomarkers in high-risk melanoma in the ECOG-intergroup phase II trial E2696. J Clin Oncol. 2007;25(18_suppl):8506.

    Article  Google Scholar 

  26. Skrombolas D, Frelinger JG. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev Clin Immunol. 2014;10(2):207–17.

    Article  CAS  Google Scholar 

  27. Horak I. Immunodeficiency in IL-2-knockout mice. Clin Immunol Immunopathol. 1995;76:S172–S173.

    Google Scholar 

  28. Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf. 2017;16(12):1347–57.

    Article  CAS  Google Scholar 

  29. Siddall E, Khatri M, Radhakrishnan J. Capillary leak syndrome: etiologies, pathophysiology, and management. Kidney Int. 2017;92(1):37–46.

    Article  Google Scholar 

  30. Jeong GH, et al. Incidence of capillary leak syndrome as an adverse effect of drugs in cancer patients: a systematic review and meta-analysis. J Clin Med. 2019;8:2.

    Google Scholar 

  31. Kragel AH, William T, Feinberg L, Pittaluga S, Striker LM, Roberts WC, Lotze MT, Yang JJ, Rosenberg SA. Pathologic findings associated with interleukin-2-based immunotherapy for cancer: a postmortem study of 19 patients. Hum Pathol. 1990;21(5):493–502.

    Article  CAS  Google Scholar 

  32. Thavendiranathan P, et al. Fulminant myocarditis owing to high-dose interleukin-2 therapy for metastatic melanoma. Br J Radiol. 2011;84(1001):e99–e102.

    Article  CAS  Google Scholar 

  33. Eisner RM, Husain A, Clark JI. Case report and brief review: IL-2-induced myocarditis. Cancer Investig. 2004;22(3):401–4.

    Article  Google Scholar 

  34. Kawalec P, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. A systematic review and meta-analysis. Arch Med Sci. 2012;8(5):767–75.

    Article  CAS  Google Scholar 

  35. Dores GM, B.-G.M., Perez-Vilar S, Adverse events associated with the use of sipuleucel-T reported to the US Food and Drug Administration’s Adverse Event Reporting System, 2010–2017. JAMA Netw Open. 2019;2(8):1–14.

    Google Scholar 

  36. Pettenati C, Ingersoll MA. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol. 2018;15(10):615–25.

    Article  CAS  Google Scholar 

  37. Liu Y, et al. Clinical Spectrum of complications induced by Intravesical immunotherapy of Bacillus Calmette-Guerin for bladder Cancer. J Oncol. 2019;2019:6230409.

    PubMed  PubMed Central  Google Scholar 

  38. Shoenfeld Y, et al. Bcg and autoimmunity: another two-edged sword. J Autoimmun. 2001;16(3):235–40.

    Article  CAS  Google Scholar 

  39. Bernini L, et al. Reactive arthritis induced by intravesical BCG therapy for bladder cancer: our clinical experience and systematic review of the literature. Autoimmun Rev. 2013;12(12):1150–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Bruera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruera, S., Leung, C.K. (2021). Immune-Related Adverse Events with Other Cancer Immunotherapies. In: Suarez-Almazor, M.E., Calabrese, L.H. (eds) Rheumatic Diseases and Syndromes Induced by Cancer Immunotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-56824-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56824-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56823-8

  • Online ISBN: 978-3-030-56824-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics