Skip to main content

Explorative Synthesis of Novel Nitride Compounds by Ammonothermal Synthesis

  • Chapter
  • First Online:
Ammonothermal Synthesis and Crystal Growth of Nitrides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 304))

  • 625 Accesses

Abstract

This chapter provides a brief overview of the synthesis of nitrides and oxonitrides by the ammonothermal method. Numerous binary, ternary and multinary nitrides as well as oxonitrides are discussed. The synthesis conditions with regard to the temperatures, pressures, precursors and mineralizers are mentioned. In addition, the crystal structure of the respective compounds will be briefly described. Since most of these compounds possess interesting electronic and optical properties, the bandgaps of the compounds are discussed in more detail and are summarized at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literature

  1. R. Juza, H. Jacobs, Ammonothermalsynthese von Magnesium‐ und Berylliumamid. Angew. Chem. 78, 208 (1966). R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966)

    Google Scholar 

  2. H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 381 (1982)

    CAS  Google Scholar 

  3. H. Jacobs, U. Fink, Investigation of the system potassium/europium/ammonia. Z. Anorg. Allg. Chem. 438, 151 (1978)

    Article  CAS  Google Scholar 

  4. H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Cäsiumamidometallaten des Cers, Neodyms und Samariums Cs3Ln2(NH2)9. J. Less-Common Met. 76, 227 (1980)

    Google Scholar 

  5. H. Jacobs, H. Kistrup, The system potassium/samarium/ammonia. Z. Anorg. Allg. Chem. 435, 127 (1977)

    Article  CAS  Google Scholar 

  6. A. Stuhr, H. Jocobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291 (1973)

    Google Scholar 

  7. G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191 (1974)

    Article  CAS  Google Scholar 

  8. D. Ehrentraut, E. Meissner, M. Bockowski, Technology of Gallium Nitride Crystal Growth (Springer, Berlin, Heidelberg, 2010), p. 3

    Book  Google Scholar 

  9. D. Ehrentraut, R.T. Pakalapati, D.S. Kamber, W. Jiang, D.W. Pocius, B.C. Downey, M. McLaurin, M.P. D’Evelyn, High quality, low cost ammonothermal bulk GaN substrates. Jpn. J. Appl. Phys. 52, 08JA01 (2013)

    Google Scholar 

  10. W. Jiang, D. Ehrentraut, J. Cook, D.S. Kamber, R.T. Pakalapati, M.P. D’Evelyn, Transparent, conductive bulk GaN by high temperature ammonothermal growth. Phys. Status Solidi B 252, 1069 (2015)

    Article  CAS  Google Scholar 

  11. R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998)

    Google Scholar 

  12. D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411 (1990)

    Article  CAS  Google Scholar 

  13. Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247 (1999)

    Article  CAS  Google Scholar 

  14. B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar, Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates. J. Electron. Mater. 35, 1104 (2006)

    Article  CAS  Google Scholar 

  15. J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Des. 18, 2365 (2018)

    Article  CAS  Google Scholar 

  16. K.S.A. Butcher, T.L. Tansley, InN, latest development and a review of the band-gap controversy. Superlattices Microstruct. 38, 1 (2005)

    Article  CAS  Google Scholar 

  17. H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn-N: Mn3N2. J. Less-Common Met. 96, 323 (1984)

    Google Scholar 

  18. G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn3N2. J. Alloys Compd. 183, 345 (1992)

    Article  CAS  Google Scholar 

  19. M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324 (2008)

    Article  CAS  Google Scholar 

  20. H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215 (1987)

    Article  CAS  Google Scholar 

  21. U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu3N. J. Less-Common Met. 161, 175 (1990)

    Article  CAS  Google Scholar 

  22. H. Jacobs, E. von Pinkowski, Synthese ternärer Nitride von Alkalimetallen: Verbindungen mit Tantal, MTaN2 mit M ≡ Na, K, Rb und Cs. J. Less-Common Met. 146, 147 (1989)

    Article  CAS  Google Scholar 

  23. N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410 (2017)

    Article  CAS  Google Scholar 

  24. J. Häusler, Ammonothermal synthesis of functional ternary and multinary nitrides. Dissertation, LMU München (2018)

    Google Scholar 

  25. T. Brokamp, H. Jacobs, Synthese und Kristallstruktur eines gemischtvalenten Lithium-Tantalnitrids Li2Ta3N5. J. Alloys Compd. 176, 47 (1991)

    Article  CAS  Google Scholar 

  26. H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSi2N3. Eur. J. Solid State Inorg. Chem. 30, 45 (1993)

    CAS  Google Scholar 

  27. D. Peters, E.F. Paulus, H. Jacobs, Preparation and crystal structure of a potassium imidenitridesilicate, K3Si6N5(NH)6. Z. Anorg. Allg. Chem. 584, 129 (1990)

    Article  CAS  Google Scholar 

  28. J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge). Chem. Eur. J. 24, 1686 (2018)

    Article  CAS  Google Scholar 

  29. J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275 (2017)

    Article  CAS  Google Scholar 

  30. T.M.M. Richter, S. LeTonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF2: ZnF2(NH3)3 and ZnF2(NH3)2. Inorg. Chem. 55, 2488 (2016)

    Article  CAS  Google Scholar 

  31. Y. Hinuma, T. Hatakeyama, Y. Kumagai, L.A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016)

    Article  CAS  Google Scholar 

  32. D. Naveh, L. Kronik, Spin-polarized electronic structure of Mn-IV-V2 chalcopyrites. Phys. Status Solidi B 243, 2159 (2006)

    Article  CAS  Google Scholar 

  33. C.J. Duan, A.C.A. Delsing, H.T. Hintzen, Red emission from Mn2+ on a tetrahedral site in MgSiN2. J. Lumin. 129, 645 (2009)

    Article  CAS  Google Scholar 

  34. T. de Boer, P. Strobel, J. Häusler, W. Schnick, A. Moewes, Band gap and electronic structure of Zn(Ge,Si)N2: probing defects using XEOL, in Advanced Light Source (ALS) User Meeting, Berkeley, CA (2017)

    Google Scholar 

  35. F. Kawamura, N. Yamada, M. Imai, T. Taniguchi, Synthesis of ZnSnN2 crystals via a high-pressure metathesis reaction. Cryst. Res. Technol. 51, 220 (2016)

    Article  CAS  Google Scholar 

  36. H. Jacobs, R. Nymwegen, Synthesis and crystal structure of a potassium nitridophosphate, K3P6N11. Z. Anorg. Allg. Chem. 623, 429 (1997)

    Article  CAS  Google Scholar 

  37. U. Müller, Anorganische Strukturchemie, 6th edn. (Vieweg + Teubner, Wiesbaden, 2008), p. 246

    Google Scholar 

  38. H. Jacobs, R. Nymwegen, S. Doyle, T. Wroblewski, W. Kockelmann, Crystalline phosphorus(V) nitride imide, HPN2 and DPN2, respectively—structure determination with X-ray, synchrotron, and neutron radiation. Z. Anorg. Allg. Chem. 623, 1467 (1997)

    Article  CAS  Google Scholar 

  39. H. Jacobs, S. Pollok, F. Golinski, Synthesis and crystal structure of Na10[P4(NH)6N4](NH2)6(NH3)0.5 with an adamantane-like anion [P4(NH)6N4]4−. Z. Anorg. Allg. Chem. 620, 1213 (1994)

    Google Scholar 

  40. F. Golinski, H. Jacobs, Synthesis and crystal structure of Rb8[P4N6(NH)4](NH2)2 with the adamantane-like anion [P4N6(NH)4]6−. Z. Anorg. Allg. Chem. 621, 29 (1995)

    Article  CAS  Google Scholar 

  41. H. Jacobs, F. Golinski, Synthesis and crystal structure of a cesium-tetraimidophosphate-diamide, Cs5[P(NH)4](NH2)2 = Cs3[P(NH)4]·2 CsNH2. Z. Anorg. Allg. Chem. 620, 531 (1994)

    Article  CAS  Google Scholar 

  42. M. Mallmann, C. Maak, R. Niklaus, W. Schnick, Ammonothermal synthesis, optical properties and DFT calculations of Mg2PN3 and Zn2PN3. Chem. Eur. J. 24, 13963 (2018)

    Google Scholar 

  43. J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592 (2007)

    Article  CAS  Google Scholar 

  44. J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures. Chem. Mater. 20, 2095 (2008)

    Article  CAS  Google Scholar 

  45. J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN3 from ammonometallates: effects of sodium content and pressure. J. Am. Ceram. Soc. 92, 344 (2009)

    Article  CAS  Google Scholar 

  46. J. Cho, B.K. Bang, S.J. Jeong, C.H. Kim, Synthesis of red-emitting nanocrystalline phosphor CaAlSiN3:Eu2+ derived from elementary constituents. RSC Adv. 4, 23218 (2014)

    Article  CAS  Google Scholar 

  47. K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17 (2014)

    Article  CAS  Google Scholar 

  48. T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500 (2012)

    Article  CAS  Google Scholar 

  49. J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.C.L. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN3. Chem. Eur. J. 23, 2583 (2017)

    Article  CAS  Google Scholar 

  50. R. Niklaus, J. Minar, J. Häusler, W. Schnick, First-principles and experimental characterization of the electronic properties of CaGaSiN3 and CaAlSiN3: the impact of chemical disorder. Phys. Chem. Chem. Phys. 19, 9292 (2017)

    Article  CAS  Google Scholar 

  51. L. Wang, R.-J. Xie, Y. Li, X. Wang, C.-G. Ma, D. Luo, T. Takeda, Y.-T. Tsai, R.-S. Liu, N. Hirosaki, Ca1−xLixAl1−xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light: Sci. Appl. 5, e16155 (2016)

    Google Scholar 

  52. J. Häusler, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis and crystal structure of the nitridoalumogermanate Ca1−xLixAl1−xGe1+xN3 (x ≈ 0.2). Eur. J. Inorg. Chem. 2018, 759 (2018)

    Google Scholar 

  53. D.R. Modeshia, R.I. Walton, Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39, 4303 (2010)

    Article  CAS  Google Scholar 

  54. T. Watanabe, K. Tajima, J. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal synthesis of LaTaON2. Chem. Lett. 40, 1101 (2011)

    Article  CAS  Google Scholar 

  55. C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON2. Adv. Mater. Sci. Eng. 2014, 5 (2014)

    Article  Google Scholar 

  56. H. Jacobs, H. Scholze, Investigation of the system Na/La/NH3. Z. Anorg. Allg. Chem. 427, 8 (1976)

    Article  CAS  Google Scholar 

  57. T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643 (2017)

    Article  CAS  Google Scholar 

  58. K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. J. Am. Chem. Soc. 137, 2227 (2015)

    Article  CAS  Google Scholar 

  59. J. Jander, H. Spandau, C.C. Addison, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Friedr. Vieweg & Sohn, Braunschweig, 1966)

    Google Scholar 

  60. N. Cordes, T. Bräuniger, W. Schnick, Ammonothermal synthesis of EAMO2N (EA = Sr, Ba; M = Nb, Ta) Perovskites and 14N solid-state NMR investigations of AM(O,N)3 (A = Ca, Sr, Ba, La). Eur. J. Inorg. Chem. 2018, 5019 (2018)

    Google Scholar 

  61. R. Dwilinski, J.M. Baranowski, M. Kaminska, R. Doradzinski, J. Garczynski, L. Sierzputowski, On GaN crystallization by ammonothermal method. Acta Phys. Pol. A 90, 763 (1996)

    Google Scholar 

  62. A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni3N determined by neutron diffraction. Inorg. Chem. 40, 5818 (2001)

    Article  CAS  Google Scholar 

  63. Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN3:Ce3+ using the ammonothermal method. J. Ceram. Soc. Jpn. 124, 66 (2016)

    Article  CAS  Google Scholar 

  64. Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN3:Ce3+ phosphor. J. Ceram. Soc. Jpn. 125, 399 (2017)

    Article  CAS  Google Scholar 

  65. A.D. Martinez, A.N. Fioretti, E.S. Toberer, A.C. Tamboli, Synthesis, structure, and optoelectronic properties of II-IV-V2 materials. J. Mater. Chem. A 5, 11418 (2017)

    Article  CAS  Google Scholar 

  66. T.R. Paudel, W.R.L. Lambrecht, First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds. Phys. Rev. B 79, 245205 (2009)

    Article  CAS  Google Scholar 

  67. M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorg. Chem. Front. 3, 578 (2016)

    Article  CAS  Google Scholar 

  68. M.R. Amin, T. de Boer, P. Becker, J. Hertrampf, R. Niewa, A. Moewes, Bandgap and electronic structure determination of oxygen-containing ammonothermal InN: experiment and theory. J. Phys. Chem. C 123, 8943 (2019)

    Google Scholar 

  69. N. Cordes, M. Nentwig, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis of the mixed-valence nitrogen-rich europium tantalum ruddlesden-popper phase EuIIEuIII2Ta2N4O3. Eur. J. Inorg. Chem. 2019, 2304 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallmann, M., Cordes, N., Schnick, W. (2021). Explorative Synthesis of Novel Nitride Compounds by Ammonothermal Synthesis. In: Meissner, E., Niewa, R. (eds) Ammonothermal Synthesis and Crystal Growth of Nitrides. Springer Series in Materials Science, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-030-56305-9_12

Download citation

Publish with us

Policies and ethics