Skip to main content

Locoregional Radionuclide Cancer Therapy (LRCT) Using Sealed and Unsealed Radionuclides

  • Chapter
  • First Online:
Locoregional Radionuclide Cancer Therapy
  • 362 Accesses

Abstract

Different approaches of LRCT using sealed and unsealed radionuclides are reexamined and contrasted to allow optimal choice to treat human cancers. With the production of devices of smaller particulate sizes and of soluble radiopharmaceuticals of more potency and longer half-life, the distinction of sealed versus unsealed radiopharmaceuticals differs only in the choice of compliance pathways and becomes less important. There are many choices of radiopharmaceuticals for LRCT such as sealed versus unsealed radiopharmaceuticals, those with versus those without tumor affinity, and particulate versus soluble forms. These choices will allow treating human cancer with less toxic and more efficacious applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andresen NS, Buatti JM, Tewfik HH, Pagedar NA, Anderson CM, Watkins JM. Radioiodine ablation following thyroidectomy for differentiated thyroid cancer: literature review of utility, dose, and toxicity. Eur Thyroid J. 2017;6(4):187–96.

    Article  CAS  Google Scholar 

  2. Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, et al. Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur J Nucl Med. 2000;27(7):766–77.

    Article  CAS  Google Scholar 

  3. Boucek JA, Turner JH. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in (131)I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2005;32(4):458–69.

    Article  CAS  Google Scholar 

  4. Delouya G, Bahary P, Carrier JF, Larouche RX, Hervieux Y, Beliveau-Nadeau D, et al. Refining prostate seed brachytherapy: comparing high-, intermediate-, and low-activity seeds for I-125 permanent seed prostate brachytherapy. Brachytherapy. 2015;14(3):329–33.

    Article  Google Scholar 

  5. Stubbs JB, Strickland AD, Frank RK, Simon J, McMillan K, Williams JA. Biodistribution and dosimetry of an aqueous solution containing sodium 3-(125I)iodo-4-hydroxybenzenesulfonate (Iotrex) for brachytherapy of resected malignant brain tumors. Cancer Biother Radiopharm. 2000;15(6):645–56.

    Article  CAS  Google Scholar 

  6. Wernicke AG, Sherr DL, Schwartz TH, Pannullo SC, Stieg PE, Boockvar JA, et al. Feasibility and safety of GliaSite brachytherapy in treatment of CNS tumors following neurosurgical resection. J Cancer Res Ther. 2010;6(1):65–74.

    Article  Google Scholar 

  7. Arnold CA, Pezhouh MK, Lam-Himlin D, Pittman ME, VandenBussche C, Voltaggio L. 90Y-TheraSpheres: the new look of Yttrium-90. Am J Surg Pathol. 2019;43(5):688–94.

    Article  Google Scholar 

  8. Aranda E, Aparicio J, Bilbao JI, Garcia-Alfonso P, Maurel J, Rodriguez J, et al. Recommendations for SIR-Spheres Y-90 resin microspheres in chemotherapy-refractory/intolerant colorectal liver metastases. Future Oncol. 2017;13(23):2065–82.

    Article  CAS  Google Scholar 

  9. Javed S, Bhutani MS. Endoscopic ultrasound-guided radiation therapy in pancreatic cancer. Minerva Gastroenterol Dietol. 2013;59(4):377–86.

    CAS  PubMed  Google Scholar 

  10. Gobitti C, Borsatti E, Arcicasa M, Roncadin M, Franchin G, Minatel E, et al. Treatment of recurrent high-grade gliomas with GliaSite brachytherapy: a prospective mono-institutional Italian experience. Tumori. 2011;97(5):614–9.

    Article  Google Scholar 

  11. de Campos TP, Nogueira LB, Trindade B, Cuperschmid EM. Dosimetric intercomparison of permanent Ho-166 seed’s implants and HDR Ir-192 brachytherapy in breast cancer. Rep Pract Oncol Radiother. 2016;21(3):240–9.

    Article  Google Scholar 

  12. Marinelli LD, Trunnell JB, et al. Factors involved in the experimental therapy of metastatic thyroid cancer with I131; a preliminary report. Radiology. 1948;51(4):553–7.

    Article  CAS  Google Scholar 

  13. Soley MH, Miller ER, Foreman N. Graves’ disease; treatment with radioiodine (I131). Miss Valley Med J. 1949;71(4):131–4.

    CAS  PubMed  Google Scholar 

  14. Marinelli LD, Hill RF. Radiation dosimetry in the treatment of functional thyroid carcinoma with I131. Radiology. 1950;55(4):494–501.

    Article  CAS  Google Scholar 

  15. Sparks RB, Crowe EA, Wong FC, Toohey RE, Siegel JA. Radiation dose distributions in normal tissue adjacent to tumors containing (131)I or (90)Y: the potential for toxicity. J Nucl Med. 2002;43(8):1110–4.

    PubMed  Google Scholar 

  16. Gholami YH, Wilson N, James D, Kuncic Z. Toward personalized dosimetry with (32)P microparticle therapy for advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2017;99(4):1029–38.

    Article  CAS  Google Scholar 

  17. Bhutani MS, Cazacu IM, Luzuriaga Chavez AA, Singh BS, Wong FCL, Erwin WD, et al. Novel EUS-guided brachytherapy treatment of pancreatic cancer with phosphorus-32 microparticles: first United States experience. VideoGIE. 2019;4(5):223–5.

    Article  Google Scholar 

  18. Reardon S. Whole-body PET scanner produces 3D images in seconds. Nature. 2019;570(7761):285–6.

    Article  CAS  Google Scholar 

  19. Wong FC, Boja J, Ho B, Kuhar MJ, Wong DF. Affinity labeling of membrane receptors using tissue-penetrating radiations. Biomed Res Int. 2013;2013:503095.

    PubMed  PubMed Central  Google Scholar 

  20. Bellia SR, Feliciani G, Duca MD, Monti M, Turri V, Sarnelli A, et al. Clinical evidence of abscopal effect in cutaneous squamous cell carcinoma treated with diffusing alpha emitters radiation therapy: a case report. J Contemp Brachytherapy. 2019;11(5):449–57.

    Article  Google Scholar 

  21. Brix N, Tiefenthaller A, Anders H, Belka C, Lauber K. Abscopal, immunological effects of radiotherapy: narrowing the gap between clinical and preclinical experiences. Immunol Rev. 2017;280(1):249–79.

    Article  CAS  Google Scholar 

  22. Bonvalot S, Rutkowski PL, Thariat J, Carrere S, Ducassou A, Sunyach MP, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019;20(8):1148–59.

    Article  CAS  Google Scholar 

  23. Pottier A, Borghi E, Levy L. New use of metals as nanosized radioenhancers. Anticancer Res. 2014;34(1):443–53.

    CAS  PubMed  Google Scholar 

  24. Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S, et al. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem. 2016;8(8):899–917.

    Article  CAS  Google Scholar 

  25. Yeh CN, Chang CW, Chung YH, Tien SW, Chen YR, Chen TW, et al. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma. Eur J Pharm Sci. 2017;107:217–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin C. L. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, F.C.L. (2021). Locoregional Radionuclide Cancer Therapy (LRCT) Using Sealed and Unsealed Radionuclides. In: Wong, F.C. (eds) Locoregional Radionuclide Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-56267-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56267-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56266-3

  • Online ISBN: 978-3-030-56267-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics