Skip to main content

Stochastic Volatility Models Predictive Relevance for Equity Markets

  • Conference paper
  • First Online:
Theory and Applications of Time Series Analysis (ITISE 2019)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

  • 1091 Accesses

Abstract

This paper builds and implements multifactor stochastic volatility models where the main objective is step ahead volatility prediction and to describe its relevance for the equity markets. The paper outlines stylised facts from the volatility literature showing density tails, persistence, mean reversion, asymmetry and long memory, all contributing to systematic data dependencies. As a by-product of the multifactor stochastic volatility model estimation, a long-simulated realization of the state vectors is available. The realization establishes a functional form of the conditional distribution, which is evaluated on observed data convenient for step ahead predictions. The paper uses European equity for relevance arguments and illustrational prediction purposes. Multifactor SV models empower volatility visibility and predictability enriching the amount of information available for equity market participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The methodology is designed for estimation and inference for models where (1) the likelihood is not available, (2) some variables are latent (unobservable), (3) the variables can be simulated and (4) there exist a well-specified and adequate statistical model for the simulations. The methodologies (General Scientific Models (GSM) and Efficient Method of Moments (EMM)) are general-purpose implementation of the Chernozhukov and Hong [9] estimator.

  2. 2.

    For the Cholesky decomposition methodology see [4].

  3. 3.

    See www.econ.duke.edu/webfiles/arg for software and applications of the MCMC Bayesian methodology. All models are coded in C/C++ and executable in both serial and parallel versions (OpenMPI).

  4. 4.

    Filtered volatility is a data-dependent concept and the dynamic system must be sampled at the name frequency as the data to determine the density.

References

  1. Andersen, T.G.: Stochastic autoregressive volatility: a framework for volatility modelling. Math. Finance 4, 75–102 (1994)

    MATH  Google Scholar 

  2. Andersen, T.G., Benzoni, L., Lund, J.: Towards an empirical foundation for continuous-time models. J. Finance 57, 1239–1284 (2002)

    Article  Google Scholar 

  3. Bailie, R.T., Bollerslev, T., Mikkelsen, H.O.: Fractionally integrated generalized autoregressive conditional heteroskedasticity. J. Econometrics 74, 3–30 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bau III, D., Trefethen, L.N.: Numerical Linear Algebra, Society of Industrial and Applied Mathemathics. Philadelphia (1997)

    Google Scholar 

  5. Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Stat. Soc. Ser. B 36, 192–326 (1974)

    MathSciNet  MATH  Google Scholar 

  6. Black, F.: Studies of stock market volatility changes. In: Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economics Statitics Section, pp. 307–327 (1976)

    Google Scholar 

  7. Brock, W.A., Dechert, W.D., Scheinkman, J.A., LeBaron, B.: A test for independence based on the correlation dimension. Econometric Rev. 15, 197–235 (1996)

    Article  MathSciNet  Google Scholar 

  8. Chernov, M., Gallant, A.R., Ghysel, E., Tauchen, G.: Alternative models for stock price dynamics. J. Econometrics 56, 225–257 (2003)

    Article  MathSciNet  Google Scholar 

  9. Chernozhukov, Victor, Hong, Han: An MCMC approach to classical estimation. J. Econometrics 115, 293–346 (2003)

    Article  MathSciNet  Google Scholar 

  10. Clark, P.K.: A subordinated stochastic Process model with finite variance for speculative prices. Econometrica 41, 135–156 (1973)

    Article  MathSciNet  Google Scholar 

  11. Christie, A.A.: The stochastic behaviour of common stock variances: value, leverage and interest rate effects. J. Financ. Econ. 10, 407–432 (1982)

    Article  Google Scholar 

  12. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Soc. 74(366), 427–431 (1979)

    Google Scholar 

  13. Durham, G.: Likelihood-based specification analysis of continuous-time models of the short-term interest rate. J. Financ. Econ. 70, 463–487 (2003)

    Article  Google Scholar 

  14. Gallant, A.R., Tauchen, G.: A Nonparametric approach to nonlinear time series analysis, estimation and simulation. In: Brillinger, D., Caines, P., Geweke, J., Parzan, E., Rosenblatt, M., Taqqu, M.S. (eds.) New Directions in Time Series Analysis, Part II, pp. 71–92. Springer, New York (1992)

    Google Scholar 

  15. Gallant, A.R., Hsieh, D.A., Tauchen, G.: Estimation of stochastic volatility models with diagnostics. J. Econometrics 81, 159–192 (1997)

    Article  Google Scholar 

  16. Gallant, A.R., Long, J.R.: Estimating stochastic differential equations efficiently by minimum chi-squared. Biometrika 84, 125–141 (1997)

    Article  MathSciNet  Google Scholar 

  17. Gallant, A.R., McCulloch, R.E.: GSM: A Program for Determining General Scientific Models, Duk, 84, University (http://econ.duke.edu/webfiles/arg/gsm) (2011)

  18. Gallant, A.R., Tauchen, G.: Reprojecting partially observed systems with application to interest rate diffusions. J. Am. Stat. Assoc. 93(441), 10–24 (1998)

    Article  Google Scholar 

  19. Gallant, A.R., Tauchen, G.: Simulated score methods and indirect inference for continuous time models. In: AĂ¯t-Sahalia, Y., Hansen, L.P. (eds.) Handbook of Financial Econometrics, North Holland, Chapter 8, pp. 199–240 (2010)

    Google Scholar 

  20. Gallant, A.R., Tauchen, G.: EMM: A Program for Efficient Methods of Moments Estimation, Duke University (http://econ.duke.edu/webfiles/arg/emm) (2010)

  21. Gnedenko, D.V.: Sur la Distribution limité du terme d’une série aléatoire. Ann. Math. 44, 423–453 (1943)

    Article  MathSciNet  Google Scholar 

  22. Granger, C., Ding, Z.: Some properties of absolute returns. Altern. Measure Risk, Ann. Econ. Stat. 40, 67–91 (1995)

    Google Scholar 

  23. Hammersley, J., Clifford, P.: Markov fields on finite graphs and lattices. Unpublished manuscript (1970)

    Google Scholar 

  24. Hansen, L.P.: Large sample properties o generalized method of moments estimators. Econometrics 50, 1029–1054 (1982)

    Article  MathSciNet  Google Scholar 

  25. Jarque, J.B., Bera, A-K.: Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 6(3), 255–259 (1980)

    Google Scholar 

  26. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, pp. 1995–2752. Wiley (1970)

    Google Scholar 

  27. Kwiatowski, D., Phillips, P.C.B., Schmid, P., Shin, T.: Testing the null hypothesis of stationary against the alternative of a unit root: How sure are we that economic series have a unit root. J. Econometrics 54, 159–178 (1992)

    Article  Google Scholar 

  28. Ljung, G.M., Box, G.E.P.: On a measure of lack of fit in time series models. Biometrika 65, 297–303 (1978)

    Article  Google Scholar 

  29. Lo, A.W., MacKinlay, C.: Stock market prices do not follow random walks: evidence from a simple specification test. Rev Financ. Stud. 1(1), 41–66 (1988)

    Article  Google Scholar 

  30. Ramsey, J.B.: Tests for specification errors in classical linear least squares regression analysis. J. Roy. Stat. Soc. B 31(2), 350–371 (1969)

    MathSciNet  MATH  Google Scholar 

  31. Rosenberg, B.: The behavior of random variables with nonstationary variance and the distribution of security prices. Unpublished paper, Research Program in Finance, University of California, Berkeley (1972)

    Google Scholar 

  32. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  33. Shepard, N.: Stochastic Volatility: Selected Readings. Oxford University Press (2004)

    Google Scholar 

  34. Tauchen, G., Pitts, M.: The price variability volume relationship on speculative markets. Econometrica 485–505 (1983)

    Google Scholar 

  35. Taylor, S.: Financial returns modelled by the product of two stochastic processes: a study of daily sugar prices 1961–79. In: Anderson, O.D. (ed.) Time Series Analysis: Theory and Practice, 1, pp. 203–226. North-Holland, Amsterdam (1982)

    Google Scholar 

  36. Taylor, S.: Asset Price Dynamics, Volatility, and Prediction. Princeton University Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Bjarte Solibakke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Solibakke, P.B. (2020). Stochastic Volatility Models Predictive Relevance for Equity Markets. In: Valenzuela, O., Rojas, F., Herrera, L.J., Pomares, H., Rojas, I. (eds) Theory and Applications of Time Series Analysis. ITISE 2019. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-56219-9_9

Download citation

Publish with us

Policies and ethics