Skip to main content

Demazure Formulas for Weight Polytopes

  • Conference paper
  • First Online:
Quantum Theory and Symmetries

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

The characters of simple Lie algebras are naturally decomposed into lattice-polytope sums. The Brion formula for those polytope sums is remarkably similar to the Weyl character formula. Here we start to investigate if other character formulas have analogs for lattice-polytope sums, by focusing on the Demazure character formulas. Using Demazure operators, we write expressions for the lattice sums of the weight polytopes of rank-2 simple Lie algebras, and the rank-3 algebra A 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This question was already asked in [15].

References

  1. H.H. Andersen, Schubert varieties and Demazure’s character formula. Invent. Math. 79, 611–618 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.-P. Antoine, D. Speiser, Characters of irreducible representations of the simple groups. I. General theory. J. Math. Phys. 5, 1226–1234 (1964); Characters of irreducible representations of the simple groups. II. Application to classical groups. J. Math. Phys. 5, 1560–1572 (1964)

    Google Scholar 

  3. M. Brion, Points entiers dans les polyèdres convexes. Ann. Scient. Éc. Norm. Sup., 4e série, t. 21, 653–663 (1988)

    Google Scholar 

  4. M. Brion, Polyèdres et réseaux, Enseign. Math. 38(1–2), 71–88 (1992)

    MathSciNet  MATH  Google Scholar 

  5. M. Demazure, Désingularisation des variétés de Schubert généralisées. Ann. scient. Éc. Norm. sup., t. 6, Sect. 2, 53–88 (1974); Une nouvelle formule des caractères. Bull. Sci. Math. 98(3), 163–172 (1974)

    Google Scholar 

  6. G. Dhillon, A. Khare, Characters of highest weight modules and integrability (2016). arXiv:1606.09640; The Weyl-Kac weight formula. Séminaire Lotharingien de Combinatoire 78B (2017), Proceedings of the 29th Conference on Formal Power Series and Algebraic Combinatorics (London), Article #77 (2018). arXiv:1802.06974

    Google Scholar 

  7. A. Joseph, On the Demazure character formula. Ann. sclent. Éc. Norm. Sup., 4e série, t. 18, 389 -419 (1985)

    Google Scholar 

  8. S. Kass, A recursive formula for characters of simple Lie algebras. J. Alg. 137, 126 (1991)

    Article  MathSciNet  Google Scholar 

  9. A. Kuniba, K. Misra, M. Okado, T. Takagi, J. Uchiyama, Characters of Demazure modules and solvable lattice models. Nucl. Phys. B 510, 555–576 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Littelmann, A generalization of the Littlewood-Richardson rule. J. Alg. 130, 328–368 (1990)

    Article  MathSciNet  Google Scholar 

  11. A. Postnikov, Permutohedra, associahedra, and beyond. Int. Math. Res. Not. 6, 1026–1106 (2009)

    Article  MathSciNet  Google Scholar 

  12. J. Rasmussen, Layer structure of irreducible Lie algebra modules (2018). Preprint arXiv:1803.06592

    Google Scholar 

  13. W. Schutzer, A new character formula for Lie algebras and Lie groups. J. Lie Theory 22(3), 817–838 (2012)

    MathSciNet  MATH  Google Scholar 

  14. M.A. Walton, Demazure characters and WZW fusion rules. J. Math. Phys. 39, 665–681 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. M.A. Walton, Polytope sums and Lie characters, in Symmetry in Physics. CRM Proceedings & Lecture Notes, vol. 34 (American Mathematical Society, Providence, 2004), pp. 203–214; Proceedings of a CRM Workshop Held in Memory of Robert T. Sharp (2002), pp. 12–14

    Google Scholar 

  16. M.A. Walton, Polytope expansion of Lie characters and applications. J. Math. Phys. 54, 121701 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Jørgen Rasmussen for collaboration and Chad Povey for 3D-printing rank-3 weight polytopes. This research was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Walton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walton, M.A. (2021). Demazure Formulas for Weight Polytopes. In: Paranjape, M.B., MacKenzie, R., Thomova, Z., Winternitz, P., Witczak-Krempa, W. (eds) Quantum Theory and Symmetries. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-55777-5_27

Download citation

Publish with us

Policies and ethics