Skip to main content

Basic Urinal Flow Curves Classification with Proposed Solutions

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1250))

Included in the following conference series:

  • 1053 Accesses

Abstract

Nowadays, the pressure on prevent invasive methods for diagnostics is still increasing in the health care sector. In the case of the lower urinary tract, early diagnosis can play a significant role to prevent a surgery. Here, the widely used non-invasive test, the uroflowmetry, is observed. As the new measurement devices are being created, new algorithms for basic urinary flow classification must be developed. There, the feature extraction methods are developed and introduced for further use in combination with standard classifiers based on machine learning. In the further work, the methods will be reviewed on extensive dataset, which is currently being created. As the credible dataset verified by several urologist will be obtained, the proposed methods should be examined. Direction of further development will depend on the results of introduced methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  2. Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley, Chichester (2013)

    MATH  Google Scholar 

  3. Buresova, E., Vidlar, A., Student, V.: Uroflowmetrie, nenahraditelna vysetrovaci metoda k diagnostice mocovych dysfunkci. Urol. Pract. 14(4), 170–172 (2013)

    Google Scholar 

  4. Chua, M.E., et al.: A critical review of recent clinical practice guidelines on the diagnosis and treatment of non-neurogenic male lower urinary tract symptoms. CUAJ-Canad. Urol. Assoc. J. 9(7–8), E463–E470 (2015)

    Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  6. de la Rosette, J.J.M.C.H., et al.: Relationships between lower urinary tract symptoms and bladder outlet obstruction: results from the ICS-“BPH” study. Neurourol. Urodyn. 17(2), 99–108 (1998)

    Google Scholar 

  7. Drake, M.J., Doumouchtsis, S.K., Hashim, H., Gammie, A.: Fundamentals of urodynamic practice, based on International Continence Society good urodynamic practices recommendations. Neurourol. Urodyn. 37(6), S50–S60 (2018)

    Google Scholar 

  8. Irwin, D.E., et al.: Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur. Urol. 50(6), 1306–1315 (2006)

    Google Scholar 

  9. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer 29(3), 31–44 (1996)

    Google Scholar 

  10. Jayanta, D.B., Kim, T.-H.: Use of artificial neural network in pattern recognition. Int. J. Softw. Eng. Appl. 4, 23–33 (2010)

    Google Scholar 

  11. Josang, A.: Generalising Bayes’ theorem in subjective logic. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) (2016)

    Google Scholar 

  12. Kranse, R., van Mastrigt, R.: Causes for variability in repeated pressure-flow measurements. Urology 61(5), 930–934 (2003)

    Google Scholar 

  13. Krhut, J., et al.: Comparison between uroflowmetry and sonouroflowmetry in recording of urinary flow in healthy men. Int. J. Urol. 22(8), 761–765 (2015)

    Google Scholar 

  14. Lahoti, S., Mathew, K., Miner, G.: Tutorial H - predictive process control: QC-data mining using statistica data miner and QC-miner. In: Nisbet, R., Elder, J., Miner, G. (eds.) Handbook of Statistical Analysis and Data Mining Applications, pp. 513–530. Academic Press, Boston (2009)

    Google Scholar 

  15. Little, M.A.: Machine Learning for Signal Processing: Data Science, Algorithms, and Computational Statistics. Oxford University Press, New York (2019)

    MATH  Google Scholar 

  16. Madersbacher, S., Alivizatos, G., Nordling, J., Sanz, C.R., Emberton, M., de la Rosette, J.J.M.C.H.: EAU 2004 guidelines on assessment, therapy and follow-up of men with lower urinary tract symptoms suggestive of benign prostatic obstruction (BPH guidelines). Eur. Urol. 46(5), 547–554 (2004)

    Google Scholar 

  17. Pan, L., Meng, Q., Pan, W., Zhao, Y., Gao, H. A feature segment based time series classification algorithm. In Li, J.B. (ed.) 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), International Conference on Instrumentation Measurement Computer Communication and Control, Qinhuangdao, Peoples R China, September 18–20, pp. 1333–1338. Harbin Inst Tech; Yanshan Univ; NE Univ Qinhuangdao; IEEE Instrumentation and Measurement Soc.; IEEE IM Soc., Beijing & Harbin Joint Chapter; Heilongjiang Instrument and Measurement Soc.; IEEE Computer Soc. (2015)

    Google Scholar 

  18. Schafer, W., et al.: Good urodynamic practices: uroflowmetry, filling cystometry, and pressure-flow studies. Neurourol. Urodyn. 21(3), 261–274 (2002)

    Google Scholar 

  19. Urbonavicius, B.G., Kaskonas, P.: Urodynamic measurement techniques: a review. Measurement 90, 64–73 (2016)

    Google Scholar 

  20. Valentini, F.A., Besson, G.R., Nelson, P.P., Zimmern, P.E.: Clinically relevant modeling of urodynamics function: the VBN model. Neurourol. Urodyn. 33(3), 361–366 (2014)

    Google Scholar 

Download references

Acknowledgment

The work has been supported by the IGA Funds of the University of Pardubice, Czech Republic. This support is very gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Stursa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stursa, D., Dolezel, P., Honc, D. (2021). Basic Urinal Flow Curves Classification with Proposed Solutions. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3_56

Download citation

Publish with us

Policies and ethics