Skip to main content

Kinetic Modeling of Enzymatic Reactions in Analyzing Hyperpolarized NMR Data

  • Chapter
  • First Online:
Dynamic Hyperpolarized Nuclear Magnetic Resonance

Part of the book series: Handbook of Modern Biophysics ((HBBT))

  • 465 Accesses

Abstract

Hyperpolarized (HP) 13C magnetic resonance is an emerging modality that provides a dramatically enhanced signal-to-noise ratio (SNR) over conventional magnetic resonance imaging (MRI). By injecting a biologically active hyperpolarized substrate and then imaging both the injected substrate and its metabolic products, this technology permits, for the first time, real-time in vivo imaging of dynamic metabolic processes in the body. Among the polarizable substrates, observing key aspects of glucose metabolism with HP 13C-labeled pyruvate (Pyr) has generated considerable clinical excitement with an initial focus on cancer and cardiac applications. However, reliably quantifying in vivo HP 13C studies, particularly in terms of biomarkers closely tied to underlying metabolic processes remains a challenge. Among the complicating factors are supraphysiological bolus injections, MRI relaxation effects, underlying enzyme kinetics, and chemical exchange processes. In this chapter, we review these effects and discuss approaches currently used to quantify in vivo data. Quantitation is of particular importance for comparing results across sites and informing on the underlying pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golman, K., Ardenkjaer-Larsen, J.H., Petersson, J.S., Mansson, S., Leunbach, I.: Molecular imaging with endogenous substances. Proc. Natl. Acad. Sci. U. S. A. 100(18), 10435–10439 (2003). https://doi.org/10.1073/pnas.1733836100

    Article  Google Scholar 

  2. Ardenkjaer-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., Golman, K.: Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 100(18), 10158–10163 (2003). https://doi.org/10.1073/pnas.1733835100

    Article  Google Scholar 

  3. Hurd, R.E., Yen, Y.F., Chen, A., Ardenkjaer-Larsen, J.H.: Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization. J. Magn. Reson. Imaging. 36(6), 1314–1328 (2012). https://doi.org/10.1002/jmri.23753

    Article  Google Scholar 

  4. Ardenkjaer-Larsen, J.H.: On the present and future of dissolution-DNP. J. Magn. Reson. 264, 3–12 (2016). https://doi.org/10.1016/j.jmr.2016.01.015

    Article  Google Scholar 

  5. Kurhanewicz, J., Vigneron, D.B., Brindle, K., Chekmenev, E.Y., Comment, A., Cunningham, C.H., Deberardinis, R.J., Green, G.G., Leach, M.O., Rajan, S.S., Rizi, R.R., Ross, B.D., Warren, W.S., Malloy, C.R.: Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia. 13(2), 81–97 (2011)

    Article  Google Scholar 

  6. Comment, A., Merritt, M.E.: Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry. 53(47), 7333–7357 (2014). https://doi.org/10.1021/bi501225t

    Article  Google Scholar 

  7. Nelson, S.J., Kurhanewicz, J., Vigneron, D.B., Larson, P.E., Harzstark, A.L., Ferrone, M., van Criekinge, M., Chang, J.W., Bok, R., Park, I., Reed, G., Carvajal, L., Small, E.J., Munster, P., Weinberg, V.K., Ardenkjaer-Larsen, J.H., Chen, A.P., Hurd, R.E., Odegardstuen, L.I., Robb, F.J., Tropp, J., Murray, J.A.: Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci. Transl. Med. 5(198), 198ra108 (2013). https://doi.org/10.1126/scitranslmed.3006070

    Article  Google Scholar 

  8. Brindle, K.M., Bohndiek, S.E., Gallagher, F.A., Kettunen, M.I.: Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn. Reson. Med. 66(2), 505–519 (2011). https://doi.org/10.1002/mrm.22999

    Article  Google Scholar 

  9. Hesketh, R.L., Brindle, K.M.: Magnetic resonance imaging of cancer metabolism with hyperpolarized (13)C-labeled cell metabolites. Curr. Opin. Chem. Biol. 45, 187–194 (2018). https://doi.org/10.1016/j.cbpa.2018.03.004

    Article  Google Scholar 

  10. Chaumeil, M.M., Radoul, M., Najac, C., Eriksson, P., Viswanath, P., Blough, M.D., Chesnelong, C., Luchman, H.A., Cairncross, J.G., Ronen, S.M.: Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: implications for diagnosis and response monitoring. Neuroimag. Clin. 12, 180–189 (2016). https://doi.org/10.1016/j.nicl.2016.06.018

    Article  Google Scholar 

  11. Schroeder, M.A., Clarke, K., Neubauer, S., Tyler, D.J.: Hyperpolarized magnetic resonance: a novel technique for the in vivo assessment of cardiovascular disease. Circulation. 124(14), 1580–1594 (2011). https://doi.org/10.1161/CIRCULATIONAHA.111.024919

    Article  Google Scholar 

  12. Cunningham, C.H., Lau, J.Y., Chen, A.P., Geraghty, B.J., Perks, W.J., Roifman, I., Wright, G.A., Connelly, K.A.: Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ. Res. 119(11), 1177–1182 (2016). https://doi.org/10.1161/CIRCRESAHA.116.309769

    Article  Google Scholar 

  13. Malloy, C.R., Merritt, M.E., Sherry, A.D.: Could 13C MRI assist clinical decision-making for patients with heart disease? NMR Biomed. 24(8), 973–979 (2011). https://doi.org/10.1002/nbm.1718

    Article  Google Scholar 

  14. Johnson, R.E., Edwards, H.T.: Lactate and pyruvate in blood and urine after exercise. J. Biol. Chem. 118(2), 427–432 (1937)

    Article  Google Scholar 

  15. Taglang, C., Korenchan, D.E., von Morze, C., Yu, J., Najac, C., Wang, S., Blecha, J.E., Subramaniam, S., Bok, R., VanBrocklin, H.F., Vigneron, D.B., Ronen, S.M., Sriram, R., Kurhanewicz, J., Wilson, D.M., Flavell, R.R.: Late-stage deuteration of (13)C-enriched substrates for T1 prolongation in hyperpolarized (13)C MRI. Chem. Commun. (Camb.). 54(41), 5233–5236 (2018). https://doi.org/10.1039/c8cc02246a

    Article  Google Scholar 

  16. Atherton, H.J., Schroeder, M.A., Dodd, M.S., Heather, L.C., Carter, E.E., Cochlin, L.E., Nagel, S., Sibson, N.R., Radda, G.K., Clarke, K., Tyler, D.J.: Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised 13C MRS. NMR Biomed. 24(2), 201–208 (2011). https://doi.org/10.1002/nbm.1573

    Article  Google Scholar 

  17. Chen, A.P., Hurd, R.E., Schroeder, M.A., Lau, A.Z., Gu, Y.P., Lam, W.W., Barry, J., Tropp, J., Cunningham, C.H.: Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-(13)C2]pyruvate in vivo. NMR Biomed. 25(2), 305–311 (2012). https://doi.org/10.1002/nbm.1749

    Article  Google Scholar 

  18. Day, S.E., Kettunen, M.I., Gallagher, F.A., Hu, D.E., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J.H., Brindle, K.M.: Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13(11), 1382–1387 (2007). https://doi.org/10.1038/nm1650

    Article  Google Scholar 

  19. Bohndiek, S.E., Kettunen, M.I., Hu, D.E., Brindle, K.M.: Hyperpolarized (13)C spectroscopy detects early changes in tumor vasculature and metabolism after VEGF neutralization. Cancer Res. 72(4), 854–864 (2012). https://doi.org/10.1158/0008-5472.CAN-11-2795

    Article  Google Scholar 

  20. Bankson, J.A., Walker, C.M., Ramirez, M.S., Stefan, W., Fuentes, D., Merritt, M.E., Lee, J., Sandulache, V.C., Chen, Y., Phan, L., Chou, P.C., Rao, A., Yeung, S.C., Lee, M.H., Schellingerhout, D., Conrad, C.A., Malloy, C., Sherry, A.D., Lai, S.Y., Hazle, J.D.: Kinetic modeling and constrained reconstruction of hyperpolarized [1-13C]-pyruvate offers improved metabolic imaging of tumors. Cancer Res. 75(22), 4708–4717 (2015). https://doi.org/10.1158/0008-5472.CAN-15-0171

    Article  Google Scholar 

  21. Santarelli, M.F., Positano, V., Giovannetti, G., Frijia, F., Menichetti, L., Ardenkjaer-Larsen, J.H., De Marchi, D., Lionetti, V., Aquaro, G., Lombardi, M., Landini, L.: How the signal-to-noise ratio influences hyperpolarized 13C dynamic MRS data fitting and parameter estimation. NMR Biomed. 25(7), 925–934 (2012). https://doi.org/10.1002/nbm.1813

    Article  Google Scholar 

  22. Sun, C.Y., Walker, C.M., Michel, K.A., Venkatesan, A.M., Lai, S.Y., Bankson, J.A.: Influence of parameter accuracy on pharmacokinetic analysis of hyperpolarized pyruvate. Magn. Reson. Med. 79(6), 3239–3248 (2018). https://doi.org/10.1002/mrm.26992

    Article  Google Scholar 

  23. Harris, T., Eliyahu, G., Frydman, L., Degani, H.: Kinetics of hyperpolarized 13C1-pyruvate transport and metabolism in living human breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 106(43), 18131–18136 (2009). https://doi.org/10.1073/pnas.0909049106

    Article  Google Scholar 

  24. Harrison, C., Yang, C., Jindal, A., DeBerardinis, R.J., Hooshyar, M.A., Merritt, M., Dean Sherry, A., Malloy, C.R.: Comparison of kinetic models for analysis of pyruvate-to-lactate exchange by hyperpolarized 13 C NMR. NMR Biomed. 25(11), 1286–1294 (2012). https://doi.org/10.1002/nbm.2801

    Article  Google Scholar 

  25. Merritt, M.E., Harrison, C., Sherry, A.D., Malloy, C.R., Burgess, S.C.: Flux through hepatic pyruvate carboxylase and phosphoenolpyruvate carboxykinase detected by hyperpolarized 13C magnetic resonance. Proc. Natl. Acad. Sci. U. S. A. 108(47), 19084–19089 (2011). https://doi.org/10.1073/pnas.1111247108

    Article  Google Scholar 

  26. Merritt, M.E., Harrison, C., Storey, C., Jeffrey, F.M., Sherry, A.D., Malloy, C.R.: Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc. Natl. Acad. Sci. U. S. A. 104(50), 19773–19777 (2007). https://doi.org/10.1073/pnas.0706235104

    Article  Google Scholar 

  27. Khegai, O., Schulte, R.F., Janich, M.A., Menzel, M.I., Farrell, E., Otto, A.M., Ardenkjaer-Larsen, J.H., Glaser, S.J., Haase, A., Schwaiger, M., Wiesinger, F.: Apparent rate constant mapping using hyperpolarized [1-(13)C]pyruvate. NMR Biomed. 27(10), 1256–1265 (2014). https://doi.org/10.1002/nbm.3174

    Article  Google Scholar 

  28. Chen, H.Y., Larson, P.E.Z., Bok, R.A., von Morze, C., Sriram, R., Delos Santos, R., Delos Santos, J., Gordon, J.W., Bahrami, N., Ferrone, M., Kurhanewicz, J., Vigneron, D.B.: Assessing prostate Cancer aggressiveness with hyperpolarized dual-agent 3D dynamic imaging of metabolism and perfusion. Cancer Res. 77(12), 3207–3216 (2017). https://doi.org/10.1158/0008-5472.CAN-16-2083

    Article  Google Scholar 

  29. Kazan, S.M., Reynolds, S., Kennerley, A., Wholey, E., Bluff, J.E., Berwick, J., Cunningham, V.J., Paley, M.N., Tozer, G.M.: Kinetic modeling of hyperpolarized (13)C pyruvate metabolism in tumors using a measured arterial input function. Magn. Reson. Med. 70(4), 943–953 (2013). https://doi.org/10.1002/mrm.24546

    Article  Google Scholar 

  30. Smith, M.R., Peterson, E.T., Gordon, J.W., Niles, D.J., Rowland, I.J., Kurpad, K.N., Fain, S.B.: In vivo imaging and spectroscopy of dynamic metabolism using simultaneous 13C and 1H MRI. IEEE Trans. Biomed. Eng. 59(1), 45–49 (2012). https://doi.org/10.1109/TBME.2011.2161988

    Article  Google Scholar 

  31. von Morze, C., Bok, R.A., Reed, G.D., Ardenkjaer-Larsen, J.H., Kurhanewicz, J., Vigneron, D.B.: Simultaneous multiagent hyperpolarized (13)C perfusion imaging. Magn. Reson. Med. 72(6), 1599–1609 (2014). https://doi.org/10.1002/mrm.25071

    Article  Google Scholar 

  32. Mariotti, E., Orton, M.R., Eerbeek, O., Ashruf, J.F., Zuurbier, C.J., Southworth, R., Eykyn, T.R.: Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart. NMR Biomed. 29(4), 377–386 (2016). https://doi.org/10.1002/nbm.3464

    Article  Google Scholar 

  33. Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B., Lee, T.Y., Mayr, N.A., Parker, G.J., Port, R.E., Taylor, J., Weisskoff, R.M.: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging. 10(3), 223–232 (1999)

    Article  Google Scholar 

  34. Chen, H.Y., Larson, P.E.Z., Gordon, J.W., Bok, R.A., Ferrone, M., van Criekinge, M., Carvajal, L., Cao, P., Pauly, J.M., Kerr, A.B., Park, I., Slater, J.B., Nelson, S.J., Munster, P.N., Aggarwal, R., Kurhanewicz, J., Vigneron, D.B.: Technique development of 3D dynamic CS-EPSI for hyperpolarized (13) C pyruvate MR molecular imaging of human prostate cancer. Magn. Reson. Med. 80(5), 2062–2072 (2018). https://doi.org/10.1002/mrm.27179

    Article  Google Scholar 

  35. Xu, H.N., Kadlececk, S., Shaghaghi, H., Zhao, H., Profka, H., Pourfathi, M., Rizi, R., Li, L.Z.: Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized (13)C labeled pyruvate. Quant. Imaging Med. Surg. 6(1), 57–66 (2016). https://doi.org/10.3978/j.issn.2223-4292.2016.02.04

    Article  Google Scholar 

  36. Asghar Butt, S., Sogaard, L.V., Ardenkjaer-Larsen, J.H., Lauritzen, M.H., Engelholm, L.H., Paulson, O.B., Mirza, O., Holck, S., Magnusson, P., Akeson, P.: Monitoring mammary tumor progression and effect of tamoxifen treatment in MMTV-PymT using MRI and magnetic resonance spectroscopy with hyperpolarized [1-13C]pyruvate. Magn. Reson. Med. 73(1), 51–58 (2015). https://doi.org/10.1002/mrm.25095

    Article  Google Scholar 

  37. Xu, H.N., Kadlececk, S., Profka, H., Glickson, J.D., Rizi, R., Li, L.Z.: Is higher lactate an indicator of tumor metastatic risk? A pilot MRS study using hyperpolarized (13)C-pyruvate. Acad. Radiol. 21(2), 223–231 (2014). https://doi.org/10.1016/j.acra.2013.11.014

    Article  Google Scholar 

  38. Lin, G., Andrejeva, G., Wong Te Fong, A.C., Hill, D.K., Orton, M.R., Parkes, H.G., Koh, D.M., Robinson, S.P., Leach, M.O., Eykyn, T.R., Chung, Y.L.: Reduced Warburg effect in cancer cells undergoing autophagy: steady- state 1H-MRS and real-time hyperpolarized 13C-MRS studies. PLoS One. 9(3), e92645 (2014). https://doi.org/10.1371/journal.pone.0092645

    Article  Google Scholar 

  39. Flori, A., Liserani, M., Frijia, F., Giovannetti, G., Lionetti, V., Casieri, V., Positano, V., Aquaro, G.D., Recchia, F.A., Santarelli, M.F., Landini, L., Ardenkjaer-Larsen, J.H., Menichetti, L.: Real-time cardiac metabolism assessed with hyperpolarized [1-(13) C]acetate in a large-animal model. Contrast Media Mol. Imaging. 10(3), 194–202 (2015). https://doi.org/10.1002/cmmi.1618

    Article  Google Scholar 

  40. Zierhut, M.L., Yen, Y.F., Chen, A.P., Bok, R., Albers, M.J., Zhang, V., Tropp, J., Park, I., Vigneron, D.B., Kurhanewicz, J., Hurd, R.E., Nelson, S.J.: Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J. Magn. Reson. 202(1), 85–92 (2010). https://doi.org/10.1016/j.jmr.2009.10.003

    Article  Google Scholar 

  41. Xu, T., Mayer, D., Gu, M., Yen, Y.F., Josan, S., Tropp, J., Pfefferbaum, A., Hurd, R., Spielman, D.: Quantification of in vivo metabolic kinetics of hyperpolarized pyruvate in rat kidneys using dynamic 13C MRSI. NMR Biomed. 24(8), 997–1005 (2011). https://doi.org/10.1002/nbm.1719

    Article  Google Scholar 

  42. Shoemark, D.K., Cliff, M.J., Sessions, R.B., Clarke, A.R.: Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum. FEBS J. 274(11), 2738–2748 (2007). https://doi.org/10.1111/j.1742-4658.2007.05808.x

    Article  Google Scholar 

  43. Brindle, K.: Watching tumours gasp and die with MRI: the promise of hyperpolarised 13C MR spectroscopic imaging. Br. J. Radiol. 85(1014), 697–708 (2012). https://doi.org/10.1259/bjr/81120511

    Article  Google Scholar 

  44. Kettunen, M.I., Hu, D.E., Witney, T.H., McLaughlin, R., Gallagher, F.A., Bohndiek, S.E., Day, S.E., Brindle, K.M.: Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma. Magn. Reson. Med. 63(4), 872–880 (2010). https://doi.org/10.1002/mrm.22276

    Article  Google Scholar 

  45. Hurd, R.E., Spielman, D., Josan, S., Yen, Y.F., Pfefferbaum, A., Mayer, D.: Exchange-linked dissolution agents in dissolution-DNP (13)C metabolic imaging. Magn. Reson. Med. 70(4), 936–942 (2013). https://doi.org/10.1002/mrm.24544

    Article  Google Scholar 

  46. Witney, T.H., Kettunen, M.I., Brindle, K.M.: Kinetic modeling of hyperpolarized 13C label exchange between pyruvate and lactate in tumor cells. J. Biol. Chem. 286(28), 24572–24580 (2011). https://doi.org/10.1074/jbc.M111.237727

    Article  Google Scholar 

  47. Josan, S., Xu, T., Yen, Y.F., Hurd, R., Ferreira, J., Chen, C.H., Mochly-Rosen, D., Pfefferbaum, A., Mayer, D., Spielman, D.: In vivo measurement of aldehyde dehydrogenase-2 activity in rat liver ethanol model using dynamic MRSI of hyperpolarized [1-(13) C]pyruvate. NMR Biomed. 26(6), 607–612 (2013). https://doi.org/10.1002/nbm.2897

    Article  Google Scholar 

  48. Serrao, E.M., Kettunen, M.I., Rodrigues, T.B., Lewis, D.Y., Gallagher, F.A., Hu, D.E., Brindle, K.M.: Analysis of (13) C and (14) C labeling in pyruvate and lactate in tumor and blood of lymphoma-bearing mice injected with (13) C- and (14) C-labeled pyruvate. NMR Biomed. 31(5), e3901 (2018). https://doi.org/10.1002/nbm.3901

    Article  Google Scholar 

  49. Hu, S., Yoshihara, H.A., Bok, R., Zhou, J., Zhu, M., Kurhanewicz, J., Vigneron, D.B.: Use of hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate to probe the effects of the anticancer agent dichloroacetate on mitochondrial metabolism in vivo in the normal rat. Magn. Reson. Imaging. 30(10), 1367–1372 (2012). https://doi.org/10.1016/j.mri.2012.05.012

    Article  Google Scholar 

  50. Park, J.M., Josan, S., Jang, T., Merchant, M., Watkins, R., Hurd, R.E., Recht, L.D., Mayer, D., Spielman, D.M.: Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model. Magn. Reson. Med. 75(3), 973–984 (2016). https://doi.org/10.1002/mrm.25766

    Article  Google Scholar 

  51. Dodd, M.S., Ball, V., Bray, R., Ashrafian, H., Watkins, H., Clarke, K., Tyler, D.J.: In vivo mouse cardiac hyperpolarized magnetic resonance spectroscopy. J. Cardiovasc. Magn. Reson. 15, 19 (2013). https://doi.org/10.1186/1532-429X-15-19

    Article  Google Scholar 

  52. Josan, S., Park, J.M., Hurd, R., Yen, Y.F., Pfefferbaum, A., Spielman, D., Mayer, D.: In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-13C] and [2-13C]pyruvate. NMR Biomed. 26(12), 1680–1687 (2013). https://doi.org/10.1002/nbm.3003

    Article  Google Scholar 

  53. Lauritzen, M.H., Laustsen, C., Butt, S.A., Magnusson, P., Sogaard, L.V., Ardenkjaer-Larsen, J.H., Akeson, P.: Enhancing the [13C]bicarbonate signal in cardiac hyperpolarized [1-13C]pyruvate MRS studies by infusion of glucose, insulin and potassium. NMR Biomed. 26(11), 1496–1500 (2013). https://doi.org/10.1002/nbm.2982

    Article  Google Scholar 

  54. Hu, S., Chen, A.P., Zierhut, M.L., Bok, R., Yen, Y.F., Schroeder, M.A., Hurd, R.E., Nelson, S.J., Kurhanewicz, J., Vigneron, D.B.: In vivo carbon-13 dynamic MRS and MRSI of normal and fasted rat liver with hyperpolarized 13C-pyruvate. Mol. Imaging Biol. 11(6), 399–407 (2009). https://doi.org/10.1007/s11307-009-0218-z

    Article  Google Scholar 

  55. Moreno, K.X., Satapati, S., DeBerardinis, R.J., Burgess, S.C., Malloy, C.R., Merritt, M.E.: Real-time detection of hepatic gluconeogenic and glycogenolytic states using hyperpolarized [2-13C]dihydroxyacetone. J. Biol. Chem. 289(52), 35859–35867 (2014). https://doi.org/10.1074/jbc.M114.613265

    Article  Google Scholar 

  56. Keshari, K.R., Sriram, R., Van Criekinge, M., Wilson, D.M., Wang, Z.J., Vigneron, D.B., Peehl, D.M., Kurhanewicz, J.: Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate. 73(11), 1171–1181 (2013). https://doi.org/10.1002/pros.22665

    Article  Google Scholar 

  57. Saito, K., Matsumoto, S., Takakusagi, Y., Matsuo, M., Morris, H.D., Lizak, M.J., Munasinghe, J.P., Devasahayam, N., Subramanian, S., Mitchell, J.B., Krishna, M.C.: 13C-MR spectroscopic imaging with hyperpolarized [1-13C]pyruvate detects early response to radiotherapy in SCC tumors and HT-29 tumors. Clin. Cancer Res. 21(22), 5073–5081 (2015). https://doi.org/10.1158/1078-0432.CCR-14-1717

    Article  Google Scholar 

  58. Scroggins, B.T., Matsuo, M., White, A.O., Saito, K., Munasinghe, J.P., Sourbier, C., Yamamoto, K., Diaz, V., Takakusagi, Y., Ichikawa, K., Mitchell, J.B., Krishna, M.C., Citrin, D.E.: Hyperpolarized [1-(13)C]-pyruvate magnetic resonance spectroscopic imaging of prostate Cancer in vivo predicts efficacy of targeting the Warburg effect. Clin. Cancer Res. 24(13), 3137–3148 (2018). https://doi.org/10.1158/1078-0432.CCR-17-1957

    Article  Google Scholar 

  59. Spielman, D.M., Mayer, D., Yen, Y.F., Tropp, J., Hurd, R.E., Pfefferbaum, A.: In vivo measurement of ethanol metabolism in the rat liver using magnetic resonance spectroscopy of hyperpolarized [1-13C]pyruvate. Magn. Reson. Med. 62(2), 307–313 (2009). https://doi.org/10.1002/mrm.21998

    Article  Google Scholar 

  60. Gallagher, F.A., Kettunen, M.I., Brindle, K.M.: Imaging pH with hyperpolarized 13C. NMR Biomed. 24(8), 1006–1015 (2011). https://doi.org/10.1002/nbm.1742

    Article  Google Scholar 

  61. Kohler, S.J., Yen, Y., Wolber, J., Chen, A.P., Albers, M.J., Bok, R., Zhang, V., Tropp, J., Nelson, S., Vigneron, D.B., Kurhanewicz, J., Hurd, R.E.: In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate. Magn. Reson. Med. 58(1), 65–69 (2007). https://doi.org/10.1002/mrm.21253

    Article  Google Scholar 

  62. Chen, A.P., Albers, M.J., Cunningham, C.H., Kohler, S.J., Yen, Y.F., Hurd, R.E., Tropp, J., Bok, R., Pauly, J.M., Nelson, S.J., Kurhanewicz, J., Vigneron, D.B.: Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience. Magn. Reson. Med. 58(6), 1099–1106 (2007). https://doi.org/10.1002/mrm.21256

    Article  Google Scholar 

  63. Hill, D.K., Orton, M.R., Mariotti, E., Boult, J.K., Panek, R., Jafar, M., Parkes, H.G., Jamin, Y., Miniotis, M.F., Al-Saffar, N.M., Beloueche-Babari, M., Robinson, S.P., Leach, M.O., Chung, Y.L., Eykyn, T.R.: Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data. PLoS One. 8(9), e71996 (2013). https://doi.org/10.1371/journal.pone.0071996

    Article  Google Scholar 

  64. Park, J.M., Josan, S., Jang, T., Merchant, M., Yen, Y.F., Hurd, R.E., Recht, L., Spielman, D.M., Mayer, D.: Metabolite kinetics in C6 rat glioma model using magnetic resonance spectroscopic imaging of hyperpolarized [1-(13)C]pyruvate. Magn. Reson. Med. 68(6), 1886–1893 (2012). https://doi.org/10.1002/mrm.24181

    Article  Google Scholar 

  65. Hansen, A.E., Gutte, H., Holst, P., Johannesen, H.H., Rahbek, S., Clemmensen, A.E., Larsen, M.M.E., Schoier, C., Ardenkjaer-Larsen, J., Klausen, T.L., Kristensen, A.T., Kjaer, A.: Combined hyperpolarized (13)C-pyruvate MRS and (18)F-FDG PET (hyperPET) estimates of glycolysis in canine cancer patients. Eur. J. Radiol. 103, 6–12 (2018). https://doi.org/10.1016/j.ejrad.2018.02.028

    Article  Google Scholar 

  66. Lupo, J.M., Chen, A.P., Zierhut, M.L., Bok, R.A., Cunningham, C.H., Kurhanewicz, J., Vigneron, D.B., Nelson, S.J.: Analysis of hyperpolarized dynamic 13C lactate imaging in a transgenic mouse model of prostate cancer. Magn. Reson. Imaging. 28(2), 153–162 (2010). https://doi.org/10.1016/j.mri.2009.07.007

    Article  Google Scholar 

  67. Park, J.M., Khemtong, C., Liu, S.C., Hurd, R.E., Spielman, D.M.: In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-(13) C]alanine. Magn. Reson. Med. 77(5), 1741–1748 (2017). https://doi.org/10.1002/mrm.26662

    Article  Google Scholar 

  68. Josan, S., Hurd, R., Billingsley, K., Senadheera, L., Park, J.M., Yen, Y.F., Pfefferbaum, A., Spielman, D., Mayer, D.: Effects of isoflurane anesthesia on hyperpolarized (13)C metabolic measurements in rat brain. Magn. Reson. Med. 70(4), 1117–1124 (2013). https://doi.org/10.1002/mrm.24532

    Article  Google Scholar 

  69. Bohndiek, S.E., Kettunen, M.I., Hu, D.E., Kennedy, B.W., Boren, J., Gallagher, F.A., Brindle, K.M.: Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J. Am. Chem. Soc. 133(30), 11795–11801 (2011). https://doi.org/10.1021/ja2045925

    Article  Google Scholar 

  70. Keshari, K.R., Kurhanewicz, J., Bok, R., Larson, P.E., Vigneron, D.B., Wilson, D.M.: Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc. Natl. Acad. Sci. U. S. A. 108(46), 18606–18611 (2011). https://doi.org/10.1073/pnas.1106920108

    Article  Google Scholar 

  71. Keshari, K.R., Sai, V., Wang, Z.J., Vanbrocklin, H.F., Kurhanewicz, J., Wilson, D.M.: Hyperpolarized [1-13C]dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET. J. Nucl. Med. 54(6), 922–928 (2013). https://doi.org/10.2967/jnumed.112.115402

    Article  Google Scholar 

Further Reading

  • Harrison, C., Yang, C., Jindal, A., DeBerardinis, R.J., Hooshyar, M.A., Merritt, M., Dean Sherry, A., Malloy, C.R.: Comparison of kinetic models for analysis of pyruvate-to-lactate exchange by hyperpolarized 13 C NMR. NMR Biomed. 25(11), 1286–1294 (2012). https://doi.org/10.1002/nbm.2801

    Article  Google Scholar 

  • Hurd, R.E., Spielman, D., Josan, S., Yen, Y.F., Pfefferbaum, A., Mayer, D.: Exchange-linked dissolution agents in dissolution-DNP (13)C metabolic imaging. Magn Reson Med. 70(4), 936–942 (2013). https://doi.org/10.1002/mrm.24544

    Article  Google Scholar 

  • Mariotti, E., Orton, M.R., Eerbeek, O., Ashruf, J.F., Zuurbier, C.J., Southworth, R., Eykyn, T.R.: Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart. NMR Biomed. 29(4), 377–386 (2016). https://doi.org/10.1002/nbm.3464

    Article  Google Scholar 

  • Zierhut, M.L., Yen, Y.F., Chen, A.P., Bok, R., Albers, M.J., Zhang, V., Tropp, J., Park, I., Vigneron, D.B., Kurhanewicz, J., Hurd, R.E., Nelson, S.J.: Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson. 202(1), 85–92 (2010). https://doi.org/10.1016/j.jmr.2009.10.003

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from NIH (R01EB01901802, R01CA17683603, P41EB0158912, R01NS107409-01A1, and P41EB015908), The Mobility Foundation, The Texas Institute for Brain Injury and Repair, The Welch Foundation (I-2009-20190330), and GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Spielman .

Editor information

Editors and Affiliations

Problems

Problems

  1. Q1.

    A solution containing hyperpolarized [1-13C]-pyruvate is injected into a brain tumor patient. A significantly higher signal of [1-13C]-lactate is observed in the tumor than in peripheral normal-appearing brain regions. Before concluding that the higher lactate production is due to the increased pyruvate flux to lactate, you remembered that this observation can be also from isotopic exchange with larger intrinsic lactate pool size in the tumor. As you want to compare the metabolic flux in the tumor and exclude the contribution of isotopic exchange, you decide to exploit the two-site exchange model from the Fig. 5.3b to estimate kPL. Is this going to work?

  2. Q2.

    You co-injected 12C-alanine with hyperpolarized [1-13C]-pyruvate into a rat to test the exchange-linked dissolution agents (ELDA) effect in liver. However, you did not see any increase in the hyperpolarized [1-13C]-alanine signal. How can you explain this?

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spielman, D.M., Park, J.M. (2021). Kinetic Modeling of Enzymatic Reactions in Analyzing Hyperpolarized NMR Data. In: Jue, T., Mayer, D. (eds) Dynamic Hyperpolarized Nuclear Magnetic Resonance. Handbook of Modern Biophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-55043-1_5

Download citation

Publish with us

Policies and ethics