Skip to main content

Sampling Strategies in Dynamic Hyperpolarized NMR

  • Chapter
  • First Online:
Dynamic Hyperpolarized Nuclear Magnetic Resonance

Part of the book series: Handbook of Modern Biophysics ((HBBT))

  • 481 Accesses

Abstract

Dynamic hyperpolarized (HP) metabolic imaging, using agents such as [1-13C]pyruvate, requires sampling strategies that accommodate space, time, and spectral domains. Nonrecoverable multinuclear magnetization is the feature of hyperpolarized magnetic resonance (MR) with the greatest impact on how different elements of MR pulse sequences can be used. This chapter introduces the features of hyperpolarized 13C MR metabolic imaging and the pulse sequences used to optimally sample these data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayer, D., Levin, Y.S., Hurd, R.E., Glover, G.H., Spielman, D.M.: Fast metabolic imaging of systems with sparse spectra: application for hyperpolarized 13C imaging. Magn. Reson. Med. 56(4), 932–937 (2006). https://doi.org/10.1002/mrm.21025

    Article  Google Scholar 

  2. Larson, P.E., Hu, S., Lustig, M., Kerr, A.B., Nelson, S.J., Kurhanewicz, J., Pauly, J.M., Vigneron, D.B.: Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magn. Reson. Med. 65(3), 610–619 (2011). https://doi.org/10.1002/mrm.22650

    Article  Google Scholar 

  3. Cunningham, C.H., Chen, A.P., Lustig, M., Hargreaves, B.A., Lupo, J., Xu, D., Kurhanewicz, J., Hurd, R.E., Pauly, J.M., Nelson, S.J., Vigneron, D.B.: Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products. J. Magn. Reson. 193(1), 139–146 (2008)

    Article  Google Scholar 

  4. Reeder, S.B., Pineda, A.R., Wen, Z., Shimakawa, A., Yu, H., Brittain, J.H., Gold, G.E., Beaulieu, C.H., Pelc, N.J.: Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn. Reson. Med. 54(3), 636–644 (2005). https://doi.org/10.1002/mrm.20624

    Article  Google Scholar 

  5. Josan, S., Park, J.M., Hurd, R., Yen, Y.F., Pfefferbaum, A., Spielman, D., Mayer, D.: In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-13C] and [2-13C]pyruvate. NMR Biomed. 26(12), 1680–1687 (2013). https://doi.org/10.1002/nbm.3003

    Article  Google Scholar 

  6. Josan, S., Hurd, R., Park, J.M., Yen, Y.F., Watkins, R., Pfefferbaum, A., Spielman, D., Mayer, D.: Dynamic metabolic imaging of hyperpolarized [2-(13) C]pyruvate using spiral chemical shift imaging with alternating spectral band excitation. Magn. Reson. Med. 71(6), 2051–2058 (2014). https://doi.org/10.1002/mrm.24871

    Article  Google Scholar 

  7. Chen, A.P., Tropp, J., Hurd, R.E., Van Criekinge, M., Carvajal, L.G., Xu, D., Kurhanewicz, J., Vigneron, D.B.: In vivo hyperpolarized 13C MR spectroscopic imaging with 1H decoupling. J. Magn. Reson. 197(1), 100–106 (2009). https://doi.org/10.1016/j.jmr.2008.12.004

    Article  Google Scholar 

  8. Josan, S., Yen, Y.F., Hurd, R., Pfefferbaum, A., Spielman, D., Mayer, D.: Application of double spin echo spiral chemical shift imaging to rapid metabolic mapping of hyperpolarized [1-(1)(3)C]-pyruvate. J. Magn. Reson. 209(2), 332–336 (2011). https://doi.org/10.1016/j.jmr.2011.01.010

    Article  Google Scholar 

  9. Granlund, K., Keshari, K.: Temoporal denoising of hyperpolarized data improves SNR while perserving dynamic information, p. 3074. ISMRM, Paris (2018)

    Google Scholar 

  10. Milshteyn, E., von Morze, C., Reed, G.D., Shang, H., Shin, P.J., Zhu, Z., Chen, H.-Y., Bok, R., Goga, A., Kurhanewicz, J., Larson, P.E.Z., Vigneron, D.B.: Development of high resolution 3D hyperpolarized carbon-13 MR molecular imaging techniques. Magn. Reson. Imaging. 38, 152–162 (2017). https://doi.org/10.1016/j.mri.2017.01.003

    Article  Google Scholar 

  11. Kohler, S.J., Yen, Y., Wolber, J., Chen, A.P., Albers, M.J., Bok, R., Zhang, V., Tropp, J., Nelson, S., Vigneron, D.B., Kurhanewicz, J., Hurd, R.E.: In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate. Magn. Reson. Med. 58(1), 65–69 (2007)

    Article  Google Scholar 

  12. Bottomley, P.A.: Spatial localization in NMR spectroscopy in vivo. Ann. N. Y. Acad. Sci. 508(333), 333–348 (1987)

    Article  Google Scholar 

  13. Cunningham, C.H., Chen, A.P., Albers, M.J., Kurhanewicz, J., Hurd, R.E., Yen, Y., Nelson, S.J., Vigneron, D.B.: Double spin-echo sequence for rapid spectroscopic imaging of hyperpolarized 13C. J. Magn. Reson. 287(2), 357–362 (2007)

    Article  Google Scholar 

  14. Chen, A.P., Cunningham, C.H.: Single voxel localization for dynamic hyperpolarized (13)C MR spectroscopy. J. Magn. Reson. 258, 81–85 (2015). https://doi.org/10.1016/j.jmr.2015.07.002

    Article  Google Scholar 

  15. Hurd, R.E.: Volume spectroscopy having image artifact reduction USA Patent US5804966A

    Google Scholar 

  16. Yen, Y.F., Kohler, S.J., Chen, A.P., Tropp, J., Bok, R., Wolber, J., Albers, M.J., Gram, K.A., Zierhut, M.L., Park, I., Zhang, V., Hu, S., Nelson, S.J., Vigneron, D.B., Kurhanewicz, J., Dirven, H.A., Hurd, R.E.: Imaging considerations for in vivo 13C metabolic mapping using hyperpolarized 13C-pyruvate. Magn. Reson. Med. 62(1), 1–10 (2009). https://doi.org/10.1002/mrm.21987

    Article  Google Scholar 

  17. Larson, P.E.Z., Kerr, A.B., Chen, A.P., Lustig, M.S., Zierhut, M.L., Hu, S., Cunningham, C.H., Pauly, J.M., Kurhanewicz, J., Vigneron, D.B.: Multiband excitation pulses for hyperpolarized 13C dynamic chemical-shift imaging. J. Magn. Reson. 194(1), 121–127 (2008). https://doi.org/10.1016/j.jmr.2008.06.010

    Article  Google Scholar 

  18. Lau, A.Z., Chen, A.P., Ghugre, N.R., Ramanan, V., Lam, W.W., Connelly, K.A., Wright, G.A., Cunningham, C.H.: Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the heart. Magn. Reson. Med. 64(5), 1323–1331 (2010). https://doi.org/10.1002/mrm.22525

    Article  Google Scholar 

  19. Wiesinger, F., Weidl, E., Menzel, M.I., Janich, M.A., Khegai, O., Glaser, S.J., Haase, A., Schwaiger, M., Schulte, R.F.: IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn. Reson. Med. 68(1), 8–16 (2011). https://doi.org/10.1002/mrm.23212

    Article  Google Scholar 

  20. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007). https://doi.org/10.1002/mrm.21391

    Article  Google Scholar 

  21. Hu, S., Lustig, M., Chen, A.P., Crane, J., Kerr, A., Kelley, D.A., Hurd, R., Kurhanewicz, J., Nelson, S.J., Pauly, J.M., Vigneron, D.B.: Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI. J. Magn. Reson. 192(2), 258–264 (2008). https://doi.org/10.1016/j.jmr.2008.03.003

    Article  Google Scholar 

  22. Larson, P.E.Z., Hu, S., Lustig, M., Kerr, A.B., Nelson, S.J., Kurhanewicz, J., Pauly, J.M., Vigneron, D.B.: Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magn. Reson. Med. 65, 610 (2010). https://doi.org/10.1002/mrm.22650

    Article  Google Scholar 

  23. Geraghty, B.J., Lau, J.Y.C., Chen, A.P., Cunningham, C.H.: Accelerated 3D echo-planar imaging with compressed sensing for time-resolved hyperpolarized 13C studies. Magn. Reson. Med. 77(2), 538–546 (2016). https://doi.org/10.1002/mrm.26125

    Article  Google Scholar 

  24. Sodickson, D.K., Manning, W.J.: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38(4), 591–603 (1997)

    Article  Google Scholar 

  25. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  26. Larkman, D.J., Hajnal, J.V., Herlihy, A.H., Coutts, G.A., Young, I.R., Ehnholm, G.: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J. Magn. Reson. Imaging. 13(2), 313–317 (2001)

    Article  Google Scholar 

  27. Tropp, J., Lupo, J.M., Chen, A., Calderon, P., McCune, D., Grafendorfer, T., Ozturk-Isik, E., Larson, P.E.Z., Hu, S., Yen, Y.-F., Robb, F., Bok, R., Schulte, R., Xu, D., Hurd, R., Vigneron, D., Nelson, S.: Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1–13C] pyruvate in a live rat at 3.0tesla on a clinical MR scanner. J. Magn. Reson. 208(1), 171–177 (2011). https://doi.org/10.1016/j.jmr.2010.10.007

    Article  Google Scholar 

  28. Lau, A.Z., Lau, J.Y.C., Chen, A.P., Cunningham, C.H.: Simultaneous multislice acquisition without trajectory modification for hyperpolarized 13C experiments. Magn. Reson. Med. 100, 10158–10157 (2018). https://doi.org/10.1002/mrm.27136

    Article  Google Scholar 

  29. Gordon, J.W., Hansen, R.B., Shin, P.J., Feng, Y., Vigneron, D.B., Larson, P.E.Z.: 3D hyperpolarized C-13 EPI with calibrationless parallel imaging. J. Magn. Reson. 289, 92–99 (2018). https://doi.org/10.1016/j.jmr.2018.02.011

    Article  Google Scholar 

  30. Mayer, D., Yen, Y.-F., Tropp, J., Pfefferbaum, A., Hurd, R.E., Spielman, D.M.: Application of subsecond spiral chemical shift imaging to real-time multislice metabolic imaging of the rat in vivo after injection of hyperpolarized13C1-pyruvate. Magn. Reson. Med. 62(3), 557–564 (2009). https://doi.org/10.1002/mrm.22041

    Article  Google Scholar 

  31. DeVience, S.J., Mayer, D.: Speeding up dynamic spiral chemical shift imaging with incoherent sampling and low-rank matrix completion. Magn. Reson. Med. 77(3), 951–960 (2017). https://doi.org/10.1002/mrm.26170

    Article  Google Scholar 

  32. Cunningham, C.H., Lau, J.Y.C., Chen, A.P., Geraghty, B.J., Perks, W.J., Roifman, I., Wright, G.A., Connelly, K.A.: Hyperpolarized 13C metabolic MRI of the human HeartNovelty and significance. Circ. Res. 119(11), 1177–1182 (2016). https://doi.org/10.1161/CIRCRESAHA.116.309769

    Article  Google Scholar 

  33. Gordon, J.W., Vigneron, D.B., Larson, P.E.: Development of a symmetric echo planar imaging framework for clinical translation of rapid dynamic hyperpolarized (13) C imaging. Magn. Reson. Med. 77(2), 826–832 (2017). https://doi.org/10.1002/mrm.26123

    Article  Google Scholar 

  34. Lau, J.Y.C., Geraghty, B.J., Chen, A.P., Cunningham, C.H.: Improved tolerance to off-resonance in spectral-spatial EPI of hyperpolarized [1-(13) C]pyruvate and metabolites. Magn. Reson. Med. 80(3), 925–934 (2018). https://doi.org/10.1002/mrm.27086

    Article  Google Scholar 

  35. Geraghty, B.J., Lau, J.Y.C., Chen, A.P., Cunningham, C.H.: Dual-Echo EPI sequence for integrated distortion correction in 3D time-resolved hyperpolarized (13) C MRI. Magn. Reson. Med. 79(2), 643–653 (2018). https://doi.org/10.1002/mrm.26698

    Article  Google Scholar 

  36. Dixon, W.T.: Simple proton spectroscopic imaging. Radiology. 153(1), 189–194 (1984). https://doi.org/10.1148/radiology.153.1.6089263

    Article  Google Scholar 

  37. Chen, A.P., Hurd, R.E., Schroeder, M.A., Lau, A.Z., Gu, Y.P., Lam, W.W., Barry, J., Tropp, J., Cunningham, C.H.: Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-(13)C2]pyruvate in vivo. NMR Biomed. 25(2), 305–311 (2012). https://doi.org/10.1002/nbm.1749

    Article  Google Scholar 

  38. Wilson, D.M., Keshari, K.R., Larson, P.E.Z., Chen, A.P., Hu, S., Criekinge, M.V., Bok, R., Nelson, S.J., Macdonald, J.M., Vigneron, D.B., Kurhanewicz, J.: Multi-compound polarization by DNP allows simultaneous assessment of multiple enzymatic activities in vivo. J. Magn. Reson. 205(1), 141–147 (2010). https://doi.org/10.1016/j.jmr.2010.04.012

    Article  Google Scholar 

  39. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 161(2), 401–407 (1986)

    Article  Google Scholar 

  40. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965). https://doi.org/10.1063/1.1695690

    Article  Google Scholar 

  41. Schilling, F., Düwel, S., Köllisch, U., Durst, M., Schulte, R.F., Glaser, S.J., Haase, A., Otto, A.M., Menzel, M.I.: Diffusion of hyperpolarized 13C-metabolites in tumor cell spheroids using real-time NMR spectroscopy. NMR Biomed. 26(5), 557–568 (2012). https://doi.org/10.1002/nbm.2892

    Article  Google Scholar 

  42. Kettunen, M.I., Kennedy, B.W.C., Hu, D.-E., Brindle, K.M.: Spin echo measurements of the extravasation and tumor cell uptake of hyperpolarized [1- 13C]lactate and [1- 13C]pyruvate. Magn. Reson. Med. 70(5), 1200–1209 (2012). https://doi.org/10.1002/mrm.24591

    Article  Google Scholar 

  43. Koelsch, B.L., Keshari, K.R., Peeters, T.H., Larson, P.E.Z., Wilson, D.M., Kurhanewicz, J.: Diffusion MR of hyperpolarized 13C molecules in solution. Analyst. 138(4), 1011 (2013). https://doi.org/10.1039/c2an36715g

    Article  Google Scholar 

  44. Koelsch, B.L., Reed, G.D., Keshari, K.R., Chaumeil, M.M., Bok, R., Ronen, S.M., Vigneron, D.B., Kurhanewicz, J., Larson, P.E.Z.: Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized 13C metabolites. Magn. Reson. Med. 74(3), 622–633 (2014). https://doi.org/10.1002/mrm.25422

    Article  Google Scholar 

  45. Gordon, J.W., Niles, D.J., Adamson, E.B., Johnson, K.M., Fain, S.B.: Application of flow sensitive gradients for improved measures of metabolism using hyperpolarized 13c MRI. Magn. Reson. Med. 75(3), 1242–1248 (2015). https://doi.org/10.1002/mrm.25584

    Article  Google Scholar 

  46. Lau, A.Z., Miller, J.J., Robson, M.D., Tyler, D.J.: Cardiac perfusion imaging using hyperpolarized 13c urea using flow sensitizing gradients. Magn. Reson. Med. 75(4), 1474–1483 (2015). https://doi.org/10.1002/mrm.25713

    Article  Google Scholar 

  47. Lau, A.Z., Miller, J.J., Robson, M.D., Tyler, D.J.: Simultaneous assessment of cardiac metabolism and perfusion using copolarized [1-13 C]pyruvate and 13 C-urea. Magn. Reson. Med. 77, 151 (2016). https://doi.org/10.1002/mrm.26106

    Article  Google Scholar 

  48. Frahm, J., Merboldt, K.D., Hanicke, W., Haase, A.: Stimulated echo imaging. J. Magn. Reson. 64, 81–93 (1985)

    Google Scholar 

  49. Merboldt, K.D., Hänicke, W., Frahm, J.: Diffusion imaging using stimulated echoes. Magn. Reson. Med. 19(2), 233–239 (1991)

    Article  Google Scholar 

  50. Larson, P.E.Z., Hurd, R.E., Kerr, A.B., Pauly, J.M., Bok, R.A., Kurhanewicz, J., Vigneron, D.B.: Perfusion and diffusion sensitive 13C stimulated-echo MRSI for metabolic imaging of cancer. Magn. Reson. Imaging. 31(5), 635–642 (2013). https://doi.org/10.1016/j.mri.2012.10.020

    Article  Google Scholar 

  51. Larson, P.E.Z., Kerr, A.B., Reed, G.D., Hurd, R.E., Kurhanewicz, J., Pauly, J.M., Vigneron, D.B.: Generating super stimulated-echoes in MRI and their application to hyperpolarized C-13 diffusion metabolic imaging. IEEE Trans. Med. Imaging. 31(2), 265–275 (2012). https://doi.org/10.1109/TMI.2011.2168235

    Article  Google Scholar 

  52. Chen, A.P., Hurd, R.E., Cunningham, C.H.: Spin tagging for hyperpolarized (1)(3)C metabolic studies. J. Magn. Reson. 214(1), 319–323 (2012). https://doi.org/10.1016/j.jmr.2011.10.007

    Article  Google Scholar 

  53. Lim, H., Thind, K., Martinez-Santiesteban, F.M., Scholl, T.J.: Construction and evaluation of a switch-tuned (13) C - (1) H birdcage radiofrequency coil for imaging the metabolism of hyperpolarized (13) C-enriched compounds. J. Magn. Reson. Imaging. 40(5), 1082–1090 (2014). https://doi.org/10.1002/jmri.24458

    Article  Google Scholar 

  54. Dominguez-Viqueira, W., Lau, A.Z., Chen, A.P., Cunningham, C.H.: Multichannel receiver coils for improved coverage in cardiac metabolic imaging using prepolarized 13C substrates. Magn. Reson. Med. 70(1), 295–300 (2012). https://doi.org/10.1002/mrm.24460

    Article  Google Scholar 

  55. Schroeder, M.A., Cochlin, L.E., Heather, L.C., Clarke, K., Radda, G.K., Tyler, D.J.: In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc. Natl. Acad. Sci. U. S. A. 105(33), 12051–12056 (2008). https://doi.org/10.1073/pnas.0805953105

    Article  Google Scholar 

  56. Day, S.E., Kettunen, M.I., Gallagher, F.A., Hu, D., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J.H., Brindle, K.M.: Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13(11), 1382–1387 (2007)

    Article  Google Scholar 

  57. Nelson, S.J., Kurhanewicz, J., Vigneron, D.B., Larson, P.E.Z., Harzstark, A.L., Ferrone, M., Van Criekinge, M., Chang, J.W., Bok, R., Park, I., Reed, G., Carvajal, L., Small, E.J., Munster, P., Weinberg, V.K., Ardenkjaer-Larsen, J.H., Chen, A.P., Hurd, R.E., Odegardstuen, L.I., Robb, F.J., Tropp, J., Murray, J.A.: Metabolic imaging of patients with prostate cancer using hyperpolarized [1–13C]pyruvate. Sci. Transl. Med. 5(198), 198ra108 (2013). https://doi.org/10.1126/scitranslmed.3006070

    Article  Google Scholar 

  58. Derby, K., Tropp, J., Hawryszko, C.: Design and evaluation of a novel dual-tuned resonator for spectroscopic imaging. J. Magn. Reson. 86, 645–651 (1990)

    Google Scholar 

  59. Chen, A.P., Albers, P., Kohler, S.J., Hurd, R.E., Tropp, J., Pels, P., Zierhut, M.L., Bok, R.A., Nelson, S.J., Kurhanewicz, J., Vigneron, D.B.: High-resolution hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T, p. 587. Proc., ISMRM, 14th Annual Meeting, Seattle (2006)

    Google Scholar 

Further Reading

  • With translation of this metabolic imaging method well under way (Kurhanewicz J et al., NEO 2019), selecting and optimizing data acquisition protocol for different applications will require careful consideration and potentially further experimentations. Incorporating different sampling strategy to highlight or suppress certain metabolic contrasts may also help to distinguish between different tissue types or interrogate metabolic changes due to diseases. For further reading see also:

    Google Scholar 

  • Chen, H.Y., Gordon, J.W., Bok, R.A., Cao, P., von Morze, C., van Criekinge, M., Milshteyn, E., Carvajal, L., Hurd, R.E., Kurhanewicz, J., Vigneron, D.B., Larson, P.E.Z.: Pulse sequence considerations for quantification of pyruvate-to-lactate conversion kPL in hyperpolarized (13) C imaging. NMR Biomed. 32(3), e4052 (2019). https://doi.org/10.1002/nbm.4052

    Article  Google Scholar 

  • Hurd, R.E., Yen, Y.F., Chen, A., Ardenkjaer-Larsen, J.H.: Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization. J Magn Reson Imaging. 36(6), 1314–1328 (2012). https://doi.org/10.1002/jmri.23753

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from NIH (P41 EB015891, AA05965, AA018681, AA13521-INIA, and EB009070), The Lucas Foundation, and GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph E. Hurd .

Editor information

Editors and Affiliations

Problems

Problems

  1. 1.

    At 3 T using an RF pulse with a bandwidth of 1000 Hz to obtain a 5 mm slice, what would the spatial offset be between [2-13C]pyruvate at 208 ppm and [2-13C]lactate at 71 ppm?

  2. 2.

    To measure a shift in oxidative and glycolytic metabolism (e.g., the Warburg effect), a ratio of the products [1-13C]lactate and [13C]bicarbonate or [2-13C]lactate and [5-13C]glutamate can be used. In this case, is there value or disadvantage in measuring signal from the injected [13C]pyruvate?

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hurd, R.E., Chen, A.P. (2021). Sampling Strategies in Dynamic Hyperpolarized NMR. In: Jue, T., Mayer, D. (eds) Dynamic Hyperpolarized Nuclear Magnetic Resonance. Handbook of Modern Biophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-55043-1_4

Download citation

Publish with us

Policies and ethics