Skip to main content

Knee: Ligament Reconstruction

  • Chapter
  • First Online:
Postoperative Imaging of Sports Injuries

Abstract

Ligamentous knee injuries are common across all levels of sport, and if untreated, they can lead to chronic instability, damage to the articular cartilage and menisci, and eventually premature osteoarthritis. The anterior cruciate ligament is the most commonly reconstructed ligament in the knee; however increasing numbers of surgeries to other ligaments, including the posterior cruciate ligament, collateral ligaments and posterolateral corner structures, are being performed as more is learned about how ligamentous injury alters the biomechanics of the knee. The majority of patients achieve excellent outcomes following surgery; however some patients present with ongoing symptoms requiring imaging investigation, such as persisting instability, reduced range of movement and pain. Post-operative imaging typically involves a combination of conventional radiographs, computed tomography and magnetic resonance imaging to provide detailed evaluation of the ligament graft or repair, bone tunnels, hardware and donor site. A detailed understanding of the expected imaging findings across all imaging modalities for the commonly performed procedures is essential when interpreting post-operative imaging, as is a knowledge of the abnormal findings associated with complications and ultimately failure. This chapter reviews the advances in the surgical techniques used to treat sporting ligamentous knee injuries and describes both the expected normal post-operative imaging appearances and those of the commonly encountered complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, Stuart MJ, Krych AJ. Incidence of anterior cruciate ligament tears and reconstruction. Am J Sports Med. 2016;44:1502–7.

    Article  PubMed  Google Scholar 

  2. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q. A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee. 2015;22:100–10.

    Article  PubMed  Google Scholar 

  3. Bencardino JT, Beltran J, Feldman MI, Rose DJ. MR imaging of complications of anterior cruciate ligament graft reconstruction. Radiographics. 2009;29:2115–26.

    Article  PubMed  Google Scholar 

  4. Herzog MM, Marshall SW, Lund JL, Pate V, Mack CD, Spang JT. Trends in incidence of ACL reconstruction and concomitant procedures among commercially insured individuals in the United States, 2002-2014. Sports Health. 2018;10:523–31.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bourke HE, Salmon LJ, Waller A, Patterson V, Pinczewski LA. Survival of the anterior cruciate ligament graft and the contralateral ACL at a minimum of 15 years. Am J Sports Med. 2012;40:1985–92.

    Article  PubMed  Google Scholar 

  6. Crawford SN, Waterman BR, Lubowitz JH. Long-term failure of anterior cruciate ligament reconstruction. Arthroscopy. 2013;29:1566–71.

    Article  PubMed  Google Scholar 

  7. Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ. Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res. 2017;475:2459–68.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Erickson BJ, Harris JD, Fillingham YA, Frank RM, Bush-Joseph CA, Bach BR, Cole BJ, Verma NN. Anterior cruciate ligament reconstruction practice patterns by NFL and NCAA football team physicians. Arthroscopy. 2014;30:731–8.

    Article  PubMed  Google Scholar 

  9. Erickson BJ, Harris JD, Fillingham YA, Cvetanovich GL, Bush-Joseph C, Cole BJ, Bach BR, Verma NN. An original study orthopedic practice patterns relating to anterior cruciate ligament reconstruction in elite athletes. Am J Orthop (Belle Mead, NJ). 2015;44(12):E480–5.

    Google Scholar 

  10. Frank RM, Higgins J, Bernardoni E, Cvetanovich G, Bush-Joseph CA, Verma NN, Bach BR. Anterior cruciate ligament reconstruction basics: bone–patellar tendon–bone autograft harvest. Arthrosc Tech. 2017;6:e1189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giaconi JC, Allen CR, Steinbach LS. Anterior cruciate ligament graft reconstruction: clinical, technical, and imaging overview. Top Magn Reson Imaging. 2009;20:129–50.

    Article  PubMed  Google Scholar 

  12. Biau DJ, Tournoux C, Katsahian S, Schranz PJ, Nizard RS. Bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of anterior cruciate ligament: meta-analysis. Br Med J. 2006;332:995–8.

    Article  Google Scholar 

  13. Reinhardt KR, Hetsroni I, Marx RG. Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes. Orthop Clin North Am. 2010;41:249–62.

    Article  PubMed  Google Scholar 

  14. Marrale J, Morrissey MC, Haddad FS. A literature review of autograft and allograft anterior cruciate ligament reconstruction. Knee Surg Sport Traumatol Arthrosc. 2007;15:690–704.

    Article  Google Scholar 

  15. Srinivasan R, Wan J, Allen CR, Steinbach LS. Knee imaging following anterior cruciate ligament reconstruction: the surgeon’s and radiologist’s perspectives. Semin Musculoskelet Radiol. 2018;22:386–97.

    Article  PubMed  Google Scholar 

  16. Wickiewicz TL, Williams RJ, Hyman J, Petrigliano F, Rozental T, Wickiewicz TL. Anterior cruciate ligament reconstruction with a four-Strand hamstring tendon autograft. J Bone Joint Surg Am. 2005;87A:225–32.

    Google Scholar 

  17. Conte EJ, Hyatt AE, Gatt CJ, Dhawan A. Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy. 2014;30:882–90.

    Article  PubMed  Google Scholar 

  18. Kang H, Dong C, Wang F. Small hamstring autograft is defined by a cut-off diameter of 7 mm and not recommended with allograft augmentation in single-bundle ACL reconstruction. Knee Surg Sport Traumatol Arthrosc. 2019;27:3650–9.

    Article  Google Scholar 

  19. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am. 1984;66:344–52.

    Article  CAS  PubMed  Google Scholar 

  20. Bryant AL, Creaby MW, Newton RU, Steele JR. Dynamic restraint capacity of the hamstring muscles has important functional implications after anterior cruciate ligament injury and anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2008;89:2324–31.

    Article  PubMed  Google Scholar 

  21. Hulet C, Sonnery-Cottet B, Stevenson C, Samuelsson K, Laver L, Zdanowicz U, Stufkens S, Curado J, Verdonk P, Spalding T. The use of allograft tendons in primary ACL reconstruction. Knee Surg Sport Traumatol Arthrosc. 2019;27:1754–70.

    Google Scholar 

  22. Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR. What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res. 2017;475:2412–26.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muramatsu K, Hachiya Y, Izawa H. Serial evaluation of human anterior cruciate ligament grafts by contrast-enhanced magnetic resonance imaging: comparison of allografts and autografts. Arthroscopy. 2008;24:1038–44.

    Article  PubMed  Google Scholar 

  24. Crawford C, Kainer M, Jernigan D, Banerjee S, Friedman C, Ahmed F, Archibald LK. Investigation of postoperative allograft-associated infections in patients who underwent musculoskeletal allograft implantation. Clin Infect Dis. 2005;41:195–200.

    Article  PubMed  Google Scholar 

  25. Legnani C, Ventura A, Terzaghi C, Borgo E, Albisetti W. Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. Int Orthop. 2010;34:465–71.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tulloch SJ, Devitt BM, Porter T, Hartwig T, Klemm H, Hookway S, Norsworthy CJ. Primary ACL reconstruction using the LARS device is associated with a high failure rate at minimum of 6-year follow-up. Knee Surg Sport Traumatol Arthrosc. 2019;27:3626–32.

    Article  Google Scholar 

  27. Jia Z-Y, Zhang C, Cao S-Q, Xue C-C, Liu T-Z, Huang X, Xu W-D. Comparison of artificial graft versus autograft in anterior cruciate ligament reconstruction: a meta-analysis. BMC Musculoskelet Disord. 2017;18:309.

    Article  PubMed  PubMed Central  Google Scholar 

  28. De Smet E, Heusdens CHW, Parizel PM, Van Dyck P. MRI following primary repair of the anterior cruciate ligament. Clin Radiol. 2019;74:649.e1–649.e10.

    Article  Google Scholar 

  29. Grassi A, Bailey JR, Signorelli C, Carbone G, Wakam AT, Lucidi GA, Zaffagnini S. Magnetic resonance imaging after anterior cruciate ligament reconstruction: a practical guide. World J Orthop. 2016;7:638–49.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zappia M, Capasso R, Berritto D, Maggialetti N, Varelli C, D’Agosto G, Martino MT, Carbone M, Brunese L. Anterior cruciate ligament reconstruction: MR imaging findings. Musculoskelet Surg. 2017;101:23–35.

    Article  CAS  PubMed  Google Scholar 

  31. Gnannt R, Chhabra A, Theodoropoulos JS, Hodler J, Andreisek G. MR imaging of the postoperative knee. J Magn Reson Imaging. 2011;34:1007–21.

    Article  PubMed  Google Scholar 

  32. Recht MP, Kramer J. MR imaging of the postoperative knee: a pictorial essay. Radiographics. 2013;22:765–74.

    Article  Google Scholar 

  33. Ma Y, Murawski CD, Rahnemai-Azar AA, Maldjian C, Lynch AD, Fu FH. Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sport Traumatol Arthrosc. 2015;23:661–8.

    Article  Google Scholar 

  34. Cassar-Pullicino VN, McCall IW, Strover AE. MRI of the knee following prosthetic anterior cruciate ligament reconstruction. Clin Radiol. 1994;49:89–99.

    Article  CAS  PubMed  Google Scholar 

  35. Meyers AB, Haims AH, Menn K, Moukaddam H. Imaging of anterior cruciate ligament repair and its complications. Am J Roentgenol. 2010;194:476–84.

    Article  Google Scholar 

  36. Lee S, Kim H, Jang J, Seong SC, Lee MC. Intraoperative correlation analysis between tunnel position and translational and rotational stability in single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy. 2012;28:1424–36.

    Article  PubMed  Google Scholar 

  37. Manaster BJ, Remley K, Newman AP, Mann FA. Knee ligament reconstruction: plain film analysis. AJR Am J Roentgenol. 1988;150:337–42.

    Article  CAS  PubMed  Google Scholar 

  38. Bernicker JP, Haddad JL, Lintner DM, DiLiberti TC, Bocell JR. Patellar tendon defect during the first year after anterior cruciate ligament reconstruction: appearance on serial magnetic resonance imaging. Arthroscopy. 1998;14:804–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48:1543–52.

    Article  PubMed  Google Scholar 

  40. Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21:948–57.

    Article  PubMed  Google Scholar 

  41. Di Benedetto P, Di Benedetto E, Fiocchi A, Beltrame A, Causero A. Causes of failure of anterior cruciate ligament reconstruction and revision surgical strategies. Knee Surg Relat Res. 2016;28:319–24.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morgan JA, Dahm D, Levy B, Stuart MJ. Femoral tunnel malposition. J Knee Surg. 2013;25:361–8.

    Article  Google Scholar 

  43. Horton LK, Jacobson JA, Lin J, Hayes CW. MR imaging of anterior cruciate ligament reconstruction graft. Am J Roentgenol. 2000;175:1091–7.

    Article  CAS  Google Scholar 

  44. Sanders TG. MR imaging of postoperative ligaments of the knee. Semin Musculoskelet Radiol. 2002;6:19–34.

    Article  PubMed  Google Scholar 

  45. Recht MR, Piraino DW, Cohen MAH, Parker RD, Bergfeld JA. Localized anterior arthrofibrosis (cyclops lesion) after reconstruction of the anterior cruciate ligament: MR imaging findings. Am J Roentgenol. 1995;165:383–5.

    Article  CAS  Google Scholar 

  46. Kulczycka P, Larbi A, Malghem J, Thienpont E, Vande Berg B, Lecouvet F. Imaging ACL reconstructions and their complications. Diagn Interv Imaging. 2015;96:11–9.

    Article  CAS  PubMed  Google Scholar 

  47. Allen CR, Giffin JR, Harner CD. Revision anterior cruciate ligament reconstruction. Orthop Clin North Am. 2003;34:79–98.

    Article  PubMed  Google Scholar 

  48. Simpfendorfer C, Miniaci A, Subhas N, Winalski CS, Ilaslan H. Pseudocyclops: two cases of ACL graft partial tears mimicking cyclops lesions on MRI. Skeletal Radiol. 2015;44:1169–73.

    Article  PubMed  Google Scholar 

  49. Facchetti L, Schwaiger BJ, Gersing AS, Guimaraes JB, Nardo L, Majumdar S, Ma BC, Link TM, Li X. Cyclops lesions detected by MRI are frequent findings after ACL surgical reconstruction but do not impact clinical outcome over 2 years. Eur Radiol. 2017;27:3499–508.

    Article  PubMed  Google Scholar 

  50. Iriuchishima T, Shirakura K, Fu FH. Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sport Traumatol Arthrosc. 2013;21:664–70.

    Article  Google Scholar 

  51. Howell SM. Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sport Traumatol Arthrosc. 1998;6:S49–55.

    Article  Google Scholar 

  52. Goss BC, Howell SM, Hull ML. Quadriceps load aggravates and roofplasty mitigates active impingement of anterior cruciate ligament grafts against the intercondylar roof. J Orthop Res. 1998;16:611–7.

    Article  CAS  PubMed  Google Scholar 

  53. Fujimoto E, Sumen Y, Deie M, Yasumoto M, Kobayashi K, Ochi M. Anterior cruciate ligament graft impingement against the posterior cruciate ligament: diagnosis using MRI plus three-dimensional reconstruction software. Magn Reson Imaging. 2004;22:1125–9.

    Article  PubMed  Google Scholar 

  54. Kropf EJ, Shen W, van Eck CF, Musahl V, Irrgang JJ, Fu FH. ACL-PCL and intercondylar notch impingement: magnetic resonance imaging of native and double-bundle ACL-reconstructed knees. Knee Surg Sport Traumatol Arthrosc. 2013;21:720–5.

    Article  Google Scholar 

  55. Smith TO, Drew BT, Toms AP, Donell ST, Hing CB. Accuracy of magnetic resonance imaging, magnetic resonance arthrography and computed tomography for the detection of chondral lesions of the knee. Knee Surg Sport Traumatol Arthrosc. 2012;20:2367–79.

    Article  Google Scholar 

  56. Sauer S, Lind M. Bone tunnel enlargement after ACL reconstruction with hamstring autograft is dependent on original bone tunnel diameter. Surg J. 2017;3:e96–e100.

    Article  Google Scholar 

  57. Marchant MH, Willimon CC, Vinson E, Pietrobon R, Garrett WE, Higgins LD. Comparison of plain radiography, computed tomography, and magnetic resonance imaging in the evaluation of bone tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sport Traumatol Arthrosc. 2010;18:1059–64.

    Article  Google Scholar 

  58. Weber AE, Delos D, Oltean HN, Vadasdi K, Cavanaugh J, Potter HG, Rodeo SA. Tibial and femoral tunnel changes after ACL reconstruction: a prospective 2-year longitudinal MRI study. Am J Sports Med. 2015;43:1147–56.

    Article  PubMed  Google Scholar 

  59. Wilson TC, Kantaras A, Atay A, Johnson DL. Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med. 2004;32:543–9.

    Article  PubMed  Google Scholar 

  60. Buyukdogan K, Laidlaw MS, Miller MD. Two-stage revision anterior cruciate ligament reconstruction using allograft bone dowels. Arthrosc Tech. 2017;6:e1297–302.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rizer M, Foremny GB, Rush A, Singer AD, Baraga M, Kaplan LD, Jose J. Anterior cruciate ligament reconstruction tunnel size: causes of tunnel enlargement and implications for single versus two-stage revision reconstruction. Skeletal Radiol. 2017;46:161–9.

    Article  PubMed  Google Scholar 

  62. Groves C, Chandramohan M, Chew C, Subedi N. Use of CT in the management of anterior cruciate ligament revision surgery. Clin Radiol. 2013;68:e552–9.

    Article  CAS  PubMed  Google Scholar 

  63. De Beus A, Koch JEJ, Hirschmann MT, Hirschmann MT. How to evaluate bone tunnel widening after ACL reconstruction—a critical review. Muscle Ligaments Tendons J. 2017;7:230–9.

    Article  Google Scholar 

  64. Papalia R, Vasta S, D’Adamio S, Giacalone A, Maffulli N, Denaro V. Metallic or bioabsorbable interference screw for graft fixation in anterior cruciate ligament (ACL) reconstruction? Br Med Bull. 2014;109:19–29.

    Article  PubMed  Google Scholar 

  65. Debieux P, Franciozi CE, Lenza M, Tamaoki MJ, Magnussen RA, Faloppa F, Belloti JC. Bioabsorbable versus metallic interference screws for graft fixation in anterior cruciate ligament reconstruction. Cochrane Database Syst Rev. 2016;24:CD009772.

    Google Scholar 

  66. Yassa R, Adam J, Qulta M. Complications following Endobutton for anterior cruciate ligament reconstruction. Orthop Res Online J. 2018;2:7.

    Article  Google Scholar 

  67. Mae T, Kuroda S, Matsumoto N, Yoneda M, Nakata K, Yoshikawa H, Shino K. Migration of EndoButton after anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy. 2011;27:1528–35.

    Article  PubMed  Google Scholar 

  68. Hardy A, Casabianca L, Andrieu K, Baverel L, Noailles T. Complications following harvesting of patellar tendon or hamstring tendon grafts for anterior cruciate ligament reconstruction: systematic review of literature. Orthop Traumatol Surg Res. 2017;103:S245–8.

    Article  CAS  PubMed  Google Scholar 

  69. Gadea F, Monnot D, Quélard B, Mortati R, Thaunat M, Fayard JM, Sonnery-Cottet B. Knee pain after anterior cruciate ligament reconstruction: evaluation of a rehabilitation protocol. Eur J Orthop Surg Traumatol. 2014;24:789–95.

    Article  CAS  PubMed  Google Scholar 

  70. Stein DA, Hunt SA, Rosen JE, Sherman OH. The incidence and outcome of patella fractures after anterior cruciate ligament reconstruction. Arthroscopy. 2002;18:578–83.

    Article  PubMed  Google Scholar 

  71. Lee GH, McCulloch P, Cole BJ, Bush-Joseph CA, Bach BR. The incidence of acute patellar tendon harvest complications for anterior cruciate ligament reconstruction. Arthroscopy. 2008;24:162–6.

    Article  PubMed  Google Scholar 

  72. Marumoto JM, Mitsunaga MM, Richardson AB, Medoff RJ, Mayfield GW. Late patellar tendon ruptures after removal of the central third for anterior cruciate ligament reconstruction. Am J Sports Med. 1996;24:698–701.

    Article  CAS  PubMed  Google Scholar 

  73. Wittstein JR, Wilson JB, Moorman CT. Complications related to hamstring tendon harvest. Oper Tech Sports Med. 2006;14:15–9.

    Article  Google Scholar 

  74. Barenius B, Ponzer S, Shalabi A, Bujak R, Norlén L, Eriksson K. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial. Am J Sports Med. 2014;42:1049–57.

    Article  PubMed  Google Scholar 

  75. Janssen RPA, du Mée AWF, van Valkenburg J, Sala HAGM, Tseng CM. Anterior cruciate ligament reconstruction with 4-strand hamstring autograft and accelerated rehabilitation: a 10-year prospective study on clinical results, knee osteoarthritis and its predictors. Knee Surg Sport Traumatol Arthrosc. 2013;21:1977–88.

    Article  Google Scholar 

  76. Söderman T, Wretling M-L, Hänni M, Mikkelsen C, Johnson RJ, Werner S, Sundin A, Shalabi A. Higher frequency of osteoarthritis in patients with ACL graft rupture than in those with intact ACL grafts 30 years after reconstruction. Knee Surg Sport Traumatol Arthrosc. 2020;28(7):2139–46.

    Article  Google Scholar 

  77. Barahona Vasquez M, Hinzpeter J, Zamorano A. Knee infection after anterior cruciate ligament reconstruction. Eur Med J. 2018;3:82–9.

    Google Scholar 

  78. Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. Knee. 2006;13:184–8.

    Article  CAS  PubMed  Google Scholar 

  79. Schulz MS, Russe K, Weiler A, Eichhorn HJ, Strobel MJ. Epidemiology of posterior cruciate ligament injuries. Arch Orthop Trauma Surg. 2003;123:186–91.

    Article  CAS  PubMed  Google Scholar 

  80. Alcalá-Galiano A, Baeva M, Ismael M, Argüeso MJ. Imaging of posterior cruciate ligament (PCL) reconstruction: normal postsurgical appearance and complications. Skeletal Radiol. 2014;43:1659–68.

    Article  PubMed  Google Scholar 

  81. Johnson P, Mitchell SM, Görtz S. Graft considerations in posterior cruciate ligament reconstruction. Curr Rev Musculoskelet Med. 2018;11:521–7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shin J, Maak TG. Arthroscopic transtibial PCL reconstruction: surgical technique and clinical outcomes. Curr Rev Musculoskelet Med. 2018;11:307–15.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Durbin TC, Johnson DL. Pearls and pitfalls of single-bundle transtibial posterior cruciate ligament reconstruction. Orthopedics. 2012;35:218–23.

    Article  PubMed  Google Scholar 

  84. Huang TW, Wang CJ, Weng LH, Chan YS. Reducing the “killer turn” in posterior cruciate ligament reconstruction. Arthroscopy. 2003;19:712–6.

    Article  PubMed  Google Scholar 

  85. Vellios EE, Jones KJ, McAllister DR. Open tibial inlay PCL reconstruction: surgical technique and clinical outcomes. Curr Rev Musculoskelet Med. 2018;11:316–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. May J, Gillette B, Morgan J, Krych A, Stuart M, Levy B. Transtibial versus inlay posterior cruciate ligament reconstruction: an evidence-based systematic review. J Knee Surg. 2010;23:73–80.

    Article  PubMed  Google Scholar 

  87. Shin YS, Kim HJ, Lee DH. No clinically important difference in knee scores or instability between transtibial and inlay techniques for PCL reconstruction: a systematic review. Clin Orthop Relat Res. 2017;475:1239–48.

    Article  PubMed  Google Scholar 

  88. Chahla J, Moatshe G, Cinque ME, Dornan GJ, Mitchell JJ, Ridley TJ, LaPrade RF. Single-bundle and double-bundle posterior cruciate ligament reconstructions: a systematic review and meta-analysis of 441 patients at a minimum 2 years’ follow-up. Arthroscopy. 2017;33:2066–80.

    Article  PubMed  Google Scholar 

  89. Spiridonov SI, Slinkard NJ, LaPrade RF. Isolated and combined grade-III posterior cruciate ligament tears treated with double-bundle reconstruction with use of endoscopically placed femoral tunnels and grafts: operative technique and clinical outcomes. J Bone Joint Surg Am. 2011;93:1773–80.

    Article  PubMed  Google Scholar 

  90. Lee D-Y, Park Y-J. Single-bundle versus double-bundle posterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials. Knee Surg Relat Res. 2017;29:246–55.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Höher J, Shafizadeh S. The PCL: different options in PCL reconstruction: choice of the graft? One or two bundles? In: The knee joint: surgical techniques and strategies; 2012. p. 377–386.

    Google Scholar 

  92. Höher J, Scheffler S, Weiler A. Graft choice and graft fixation in PCL reconstruction. Knee Surg Sport Traumatol Arthrosc. 2003;11:297–306.

    Article  Google Scholar 

  93. Maruyama Y, Shitoto K, Baba T, Kaneko K. Evaluation of the clinical results of posterior cruciate ligament reconstruction—a comparison between the use of the bone tendon bone and semitendinosus and gracilis tendons. Sport Med Arthrosc Rehabil Ther Technol. 2012;4:1–5.

    Article  Google Scholar 

  94. Ansari AS, Dennis BB, Horner NS, Zhu M, Brookes C, Khan M, Grant JA. Influence of graft source on postoperative activity and joint laxity in posterior cruciate ligament reconstruction: a systematic review. Arthroscopy. 2019;35:262–74.

    Article  PubMed  Google Scholar 

  95. Sherman PM, Sanders TG, Morrison WB, Schweitzer ME, Leis HT, Nusser CA. MR imaging of the posterior cruciate ligament graft: initial experience in 15 patients with clinical correlation. Radiology. 2001;221:191–8.

    Article  CAS  PubMed  Google Scholar 

  96. Gancel E, Magnussen RA, Lustig S, Demey G, Neyret P, Servien E. Tunnel position following posterior cruciate ligament reconstruction: an in vivo computed tomography analysis. Knee. 2012;19:450–4.

    Article  PubMed  Google Scholar 

  97. Shin YS, Han SB, Hwang YK, Suh DW, Lee DH. Tibial tunnel aperture location during single-bundle posterior cruciate ligament reconstruction: comparison of tibial guide positions. Arthroscopy. 2015;31:874–81.

    Article  PubMed  Google Scholar 

  98. Nicodeme JD, Löcherbach C, Jolles BM. Tibial tunnel placement in posterior cruciate ligament reconstruction: a systematic review. Knee Surg Sport Traumatol Arthrosc. 2014;22:1556–62.

    Article  Google Scholar 

  99. Marcus MS, Koh JL. Complications and PCL reconstruction. In: Posterior cruciate ligament injury. Cham: Springer International Publishing; 2015. p. 329–33.

    Chapter  Google Scholar 

  100. Fanelli GC, Monahan TJ. Complications of posterior cruciate ligament reconstruction. Sports Med Arthrosc. 1999;7:296–302.

    Article  Google Scholar 

  101. Kwon JH, Han JH, Jo DY, Park HJ, Lee SY, Bhandare N, Suh DW, Nha KW. Tunnel volume enlargement after posterior cruciate ligament reconstruction: comparison of achilles allograft with mixed autograft/allograft—a prospective computed tomography study. Arthroscopy. 2014;30:326–34.

    Article  PubMed  Google Scholar 

  102. Reddy AS, Frederick RW. Evaluation of the intraosseous and extraosseous blood supply to the distal femoral condyles. Am J Sports Med. 1998;26:415–9.

    Article  CAS  PubMed  Google Scholar 

  103. Saini A, Saifuddin A. MRI of osteonecrosis. Clin Radiol. 2004;59:1079–93.

    Article  CAS  PubMed  Google Scholar 

  104. Moatshe G, Dean CS, Chahla J, Serra Cruz R, LaPrade RF. Anatomic fibular collateral ligament reconstruction. Arthrosc Tech. 2016;5:e309–14.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Larsen M, Toth A. Examination of posterolateral corner injuries. J Knee Surg. 2005;18:146–50.

    Article  PubMed  Google Scholar 

  106. Kennedy MI, Bernhardson A, Moatshe G, Buckley PS, Engebretsen L, LaPrade RF. Fibular collateral ligament/posterolateral corner injury: when to repair, reconstruct, or both. Clin Sports Med. 2019;38:261–74.

    Article  PubMed  Google Scholar 

  107. Naraghi A, Pearce D, Whelan D, Chahal J. Imaging of the postoperative condition of posterolateral corner injuries. Semin Musculoskelet Radiol. 2018;22:413–23.

    Article  PubMed  Google Scholar 

  108. Hughston JC, Andrews JR, Cross MJ, Moschi A. Classification of knee ligament instabilities. Part II. The lateral compartment. J Bone Joint Surg Am. 1976;58:173–9.

    Article  CAS  PubMed  Google Scholar 

  109. Geeslin AG, LaPrade RF. Outcomes of treatment of acute grade-III isolated and combined posterolateral knee injuries. J Bone Joint Surg Am. 2011;93:1672–83.

    Article  PubMed  Google Scholar 

  110. Shelbourne KD, Haro MS, Gray T. Knee dislocation with lateral side injury: results of an en masse surgical repair technique of the lateral side. Am J Sports Med. 2007;35:1105–16.

    Article  PubMed  Google Scholar 

  111. Grawe B, Schroeder AJ, Kakazu R, Messer MS. Lateral collateral ligament injury about the knee: anatomy, evaluation, and management. J Am Acad Orthop Surg. 2018;26:e120–7.

    Article  PubMed  Google Scholar 

  112. Franciozi CE, Kubota MS, Abdalla RJ, Cohen M, Luzo MVM, LaPrade RF. Posterolateral corner repair and reconstruction: overview of current techniques. Ann Joint. 2018;3:1–9.

    Article  Google Scholar 

  113. Larson RV. Isometry of the lateral collateral and popliteofibular ligaments and techniques for reconstruction using a free semitendinosus tendon graft. Oper Tech Sports Med. 2012;20:65–71.

    Article  Google Scholar 

  114. LaPrade RF, Johansen S, Wentorf FA, Engebretsen L, Esterberg JL, Tso A. An analysis of an anatomical posterolateral knee reconstruction: an in vitro, biomechanical study and development of a surgical technique. Am J Sports Med. 2004;32:1405–14.

    Article  PubMed  Google Scholar 

  115. Stannard JP, Brown SL, Robinson JT, McGwin G, Volgas DA. Reconstruction of the posterolateral corner of the knee. Arthroscopy. 2005;21:1051–9.

    Article  PubMed  Google Scholar 

  116. LaPrade RF, Johansen S, Agel J, Risberg MA, Moksnes H, Engebretsen L. Outcomes of an anatomic posterolateral knee reconstruction. J Bone Joint Surg Am. 2010;92:16–22.

    Article  PubMed  Google Scholar 

  117. Feeley BT, Muller MS, Sherman S, Allen AA, Pearle AD. Comparison of posterolateral corner reconstructions using computer-assisted navigation. Arthroscopy. 2010;26:1088–95.

    Article  PubMed  Google Scholar 

  118. Levy BA, Dajani KA, Morgan JA, Shah JP, Dahm DL, Stuart MJ. Repair versus reconstruction of the fibular collateral ligament and posterolateral corner in the multiligament-injured knee. Am J Sports Med. 2010;38:804–9.

    Article  PubMed  Google Scholar 

  119. Westermann RW, Marx RG, Spindler KP, et al. No difference between posterolateral corner repair and reconstruction with concurrent ACL surgery: results from a prospective multicenter cohort. Orthop J Sport Med. 2019;7:232596711986106.

    Article  Google Scholar 

  120. Geeslin AG, Moulton SG, LaPrade RF. A systematic review of the outcomes of posterolateral corner knee injuries, part 1. Am J Sports Med. 2015;44:1336–42.

    Article  PubMed  Google Scholar 

  121. Tischer T, Paul J, Pape D, Hirschmann MT, Imhoff AB, Hinterwimmer S, Feucht MJ. The impact of osseous malalignment and realignment procedures in knee ligament surgery: a systematic review of the clinical evidence. Orthop J Sport Med. 2017;5:232596711769728.

    Article  Google Scholar 

  122. Arthur A, LaPrade RF, Agel J. Proximal tibial opening wedge osteotomy as the initial treatment for chronic posterolateral corner deficiency in the varus knee. Am J Sports Med. 2007;35:1844–50.

    Article  PubMed  Google Scholar 

  123. Rios CG, Leger RR, Cote MP, Yang C, Arciero RA. Posterolateral corner reconstruction of the knee: evaluation of a technique with clinical outcomes and stress radiography. Am J Sports Med. 2010;38:1564–74.

    Article  PubMed  Google Scholar 

  124. MacDonald P, Vo A. Complications of posterolateral corner injuries of the knee and how to avoid them. Sports Med Arthrosc. 2015;23:51–4.

    Article  PubMed  Google Scholar 

  125. Schweitzer ME, Mandel S, Schwartzman RJ, Knobler RL, Tahmoush AJ. Reflex sympathetic dystrophy revisited: MR imaging findings before and after infusion of contrast material. Radiology. 1995;195:211–4.

    Article  CAS  PubMed  Google Scholar 

  126. Gali JC, de Paula Bernardes A, dos Santos LC, Ferreira TC, Almagro MAP, da Silva PAC. Tunnel collision during simultaneous anterior cruciate ligament and posterolateral corner reconstruction. Knee Surg Sport Traumatol Arthrosc. 2016;24:195–200.

    Article  Google Scholar 

  127. Helito CP, Bonadio MB, Demange MK, da Mota e Albuquerque RF, Pécora JR, Camanho GL, Angelini FJ. Screw loosening and iliotibial band friction after posterolateral corner reconstruction. Knee. 2014;21:769–73.

    Article  PubMed  Google Scholar 

  128. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. Anatomy of the anterolateral ligament of the knee. J Anat. 2013;223:321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sonnery-Cottet B, Daggett M, Fayard JM, et al. Anterolateral ligament expert group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament—deficient knee. J Orthop Traumatol. 2017;18:91–106.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Drahansky M, Paridah M, Moradbak A, Mohamed A, Owolabi F, Asniza M, Abdul Khalid SH. We are IntechOpen, the world’ s leading publisher of Open Access books Built by scientists, for scientists TOP 1%. Intech. 2016;1:13.

    Google Scholar 

  131. Claes S, Bartholomeeusen S, Bellemans J. High prevalence of anterolateral ligament abnormalities in magnetic resonance images of anterior cruciate ligament-injured knees. Acta Orthop Belg. 2014;80:45–9.

    PubMed  Google Scholar 

  132. Rosenstiel N, Praz C, Ouanezar H, Saithna A, Fournier Y, Hager J-P, Thaunat M, Sonnery-Cottet B. Combined anterior cruciate and anterolateral ligament reconstruction in the professional athlete: clinical outcomes from the scientific anterior cruciate ligament network international study group in a series of 70 patients with a minimum follow-up of 2 years. Arthroscopy. 2019;35:885–92.

    Article  PubMed  Google Scholar 

  133. Sonnery-Cottet B, Thaunat M, Freychet B, Pupim BHB, Murphy CG, Claes S. Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med. 2015;43:1598–605.

    Article  PubMed  Google Scholar 

  134. Duffy PS, Miyamoto RG. Management of medial collateral ligament injuries in the knee: an update and review. Phys Sportsmed. 2010;38:48–54.

    Article  PubMed  Google Scholar 

  135. Phisitkul P, James SL, Wolf BR, Amendola A. MCL injuries of the knee: current concepts review. Iowa Orthop J. 2006;26:77–90.

    PubMed  PubMed Central  Google Scholar 

  136. Varelas AN, Erickson BJ, Cvetanovich GL, Bach BR. Medial collateral ligament reconstruction in patients with medial knee instability: a systematic review. Orthop J Sport Med. 2017;5:2325967117703920.

    Article  Google Scholar 

  137. Fetto JF, Marshall JL. Medial collateral ligament injuries of the knee: a rationale for treatment. Clin Orthop Relat Res. 1978:206–218.

    Google Scholar 

  138. Encinas-Ullán CA, Rodríguez-Merchán ECECC. Isolated medial collateral ligament tears: an update on management. EFORT Open Rev. 2018;3:398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Corten K, Hoser C, Fink C, Bellemans J. Case reports: a stener-like lesion of the medial collateral ligament of the knee. Clin Orthop Relat Res. 2010;468:289–93.

    Article  PubMed  Google Scholar 

  140. Alaia EF, Rosenberg ZS, Alaia MJ. Stener-like lesions of the superficial medial collateral ligament of the knee: MRI features. Am J Roentgenol. 2019;213:1–5.

    Article  Google Scholar 

  141. van der List JP, DiFelice GS. Primary repair of the medial collateral ligament with internal bracing. Arthrosc Tech. 2017;6:e933–7.

    Article  PubMed  PubMed Central  Google Scholar 

  142. DeLong JM, Waterman BR. Surgical techniques for the reconstruction of medial collateral ligament and posteromedial corner injuries of the knee: a systematic review. Arthroscopy. 2015;31:2258–2272.e1.

    Article  PubMed  Google Scholar 

  143. Gelber PE, Perelli S. Treatment of the medial collateral ligament injuries. Ann Joint. 2018;3:1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Baren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baren, J.P., Rowbotham, E., Wuertzer, S.D., Grainger, A.J. (2020). Knee: Ligament Reconstruction. In: Rowbotham, E., Grainger, A.J. (eds) Postoperative Imaging of Sports Injuries. Springer, Cham. https://doi.org/10.1007/978-3-030-54591-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54591-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54590-1

  • Online ISBN: 978-3-030-54591-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics