Skip to main content

Avoiding Partial Sleep: The Way for Augmentation of Brain Function

  • Chapter
  • First Online:
Modern Approaches to Augmentation of Brain Function

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1484 Accesses

Abstract

Inability to solve complex problems or errors in decision-making is often attributed to poor brain processing and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem-solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high-order cortical areas. This is why complex problem-solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioceptors during wakefulness switch to the processing of interoceptive information during sleep. It became clear that during sleep all “computational power” of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the “intellectual power” and the restorative function of sleep for visceral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerstedt T, Philip P, Capelli A et al (2011) Sleep loss and accidents–work hours, life style, and sleep pathology. Prog Brain Res 190:169–188

    PubMed  Google Scholar 

  • Akeyson EW, Schramm LP (1994) Splanchnic and somatic afferent convergence on cervical spinal neurons of the rat. Am J Phys 266(Suppl 1):R268–R276

    CAS  Google Scholar 

  • Amassian VE (1951) Cortical representation of visceral afferents. J Neurophysiol 14:435–446

    Google Scholar 

  • Andrillon T, Windt J, Silk T (2019) Does the mind wander when the brain takes a break? Local sleep in wakefulness, attentional lapses and mind-wandering. Front Neurosci 13:949

    PubMed  PubMed Central  Google Scholar 

  • Arendt-Nielsen L, Svensson P (2001) Referred muscle pain: basic and clinical findings. Clin J Pain 17:11–19

    CAS  PubMed  Google Scholar 

  • Bailey P, Bremer F (1938) A sensory cortical representation of the vagus nerve. With a note on the effects of low blood pressure on the cortical electrogramm. J Neurophysiol 1:405–414

    Google Scholar 

  • Barger LK, Ayas NT, Cade BE et al (2006) Impact of extended-duration shifts on medical errors, adverse events, and attentional failures. PLoS Med 3:e487

    PubMed  PubMed Central  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Human Neurobiol 1:195–204

    CAS  Google Scholar 

  • Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythm 14:557–568

    CAS  Google Scholar 

  • Borich MR, Kimberley TJ (2011) Both sleep and wakefulness support consolidation of continuous, goal-directed, visuomotor skill. Exp Brain Res 214:619–630

    PubMed  PubMed Central  Google Scholar 

  • Borich M, Furlong M, Holsman D et al (2011) Goal-directed visuomotor skill learning: off-line enhancement and the importance of the primary motor cortex. Restor Neur Neurosci 29:105–113

    Google Scholar 

  • Born J, Rasch B, Gais S (2006) Sleep to remember. Neuroscientist 12:410–424

    PubMed  Google Scholar 

  • Brooks DC, Bizzi E (1963) Brain stem electrical activity during deep sleep. Arch Ital Biol 101:648–665

    CAS  PubMed  Google Scholar 

  • Cajochen C, Foy R, Dijk DJ (1999) Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res Online 2:65–69

    CAS  PubMed  Google Scholar 

  • Cash SS, Halgren E, Dehghani N et al (2009) The human K-complex represents an isolated cortical down-state. Science 324:1084–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervero F (1983) Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system. J Physiol 337:51–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervero F, Connell LA, Lawson SN (1984) Somatic and visceral primary afferents in the lower thoracic dorsal root ganglia of the cat. J Comp Neurol 228:422–431

    CAS  PubMed  Google Scholar 

  • Chee MW, Tan JC, Zheng H et al (2008) Lapsing during sleep deprivation is associated with distributed changes in brain activation. J Neurosci 28:5519–5528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chernigovskii VN (1960) Interoreceptori (Interoceptors). Medgiz, Moscow

    Google Scholar 

  • Chuah LY, Chee MW (2008) Cholinergic augmentation modulates visual task performance in sleep-deprived young adults. J Neurosci 28:11369–11377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cirelli C, Shaw PJ, Rechtschaffen A et al (1999) No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res 4:184–193

    Google Scholar 

  • Cohen DA, Robertson EM (2007) Motor sequence consolidation: constrained by critical time windows or competing components. Exp Brain Res 177:440–446

    PubMed  Google Scholar 

  • Cohen DA, Pascual-Leone A, Press DZ et al (2005) Off-line learning of motor skill memory: a double dissociation of goal and movement. Proc Natl Acad Sci U S A 102:18237–18241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic cortico-thalamic relationships. J Neurosci 15:604–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Criscimagna-Hemminger SE, Shadmehr R (2008) Consolidation patterns of human motor memory. J Neurosci 28:9610–9618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17

    CAS  PubMed  Google Scholar 

  • Debas K, Carrier J, Orban P et al (2010) Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc Natl Acad Sci U S A 107:17839–17844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11:114–126

    CAS  PubMed  Google Scholar 

  • Diekelmann S, Buchel C, Born J et al (2011) Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat Neurosci 14:381–386

    CAS  PubMed  Google Scholar 

  • Diekelmann S, Biggel S, Rasch B et al (2012) Offline consolidation of memory varies with time in slow wave sleep and can be accelerated by cuing memory reactivations. Neurobiol Learn Mem 98:103–111

    PubMed  Google Scholar 

  • Diekelmann S, Wilhelm I, Wagner U et al (2013) Sleep to implement an intention. Sleep 36:149–153

    PubMed  PubMed Central  Google Scholar 

  • Dinges DF (1995) An overview of sleepiness and accidents. J Sleep Res 4:4–14

    CAS  PubMed  Google Scholar 

  • Dinges DF, Pack F, Williams K et al (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20:267–277

    CAS  PubMed  Google Scholar 

  • Doyon J, Korman M, Morin A et al (2009) Contribution of night and day sleep vs. simple passage of time to the consolidation of motor sequence and visuomotor adaptation learning. Exp Brain Res 195:15–26

    PubMed  PubMed Central  Google Scholar 

  • Empson JAC, Clarke P (1970) Rapid eye movements and remembering. Nature 227:28–288

    Google Scholar 

  • Everson CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat. III. Total sleep deprivation. Sleep 12:13–21

    CAS  PubMed  Google Scholar 

  • Fernandez LMG, Vantomme G, Osorio-Forero A, Cardis R, Béard E, Lüthi A (2018) Thalamic reticular control of local sleep in mouse sensory cortex. eLife 7:e39111

    PubMed  PubMed Central  Google Scholar 

  • Ferrara M, De Gennaro L (2011) Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle. Curr Top Med Chem 11:2423–2437

    CAS  PubMed  Google Scholar 

  • Fowler M, Sullivan M, Ekstrand B (1973) Sleep and memory. Science 179:302–304

    CAS  PubMed  Google Scholar 

  • Gardner ED, Thomas LM, Morin F (1955) Cortical projections of fast visceral afferents in the cat and monkey. Am J Physiol 183:438–445

    CAS  PubMed  Google Scholar 

  • Genzel L, Dresler M, Wehrle R et al (2009) Slow wave sleep and REM sleep awakenings do not affect sleep dependent memory consolidation. Sleep 32:302–310

    PubMed  PubMed Central  Google Scholar 

  • Glass BD, Maddox WT, Bowen C et al (2011) The effects of 24-hour sleep deprivation on the exploration-exploitation trade-off. Biol Rhythm Res 42:99–110

    PubMed  PubMed Central  Google Scholar 

  • Halász P, Pál I, Rajna P (1985) K-complex formation of the EEG in sleep: a survey and new examinations. Acta Physiol Hung 65:3–35

    PubMed  Google Scholar 

  • Harrison Y, Horne JA (2000) The impact of sleep deprivation on decision making: a review. J Exp Psychol Appl 6:236–249

    CAS  PubMed  Google Scholar 

  • Head H (1896) On disturbances of sensation with especial reference to the pain of visceral disease. Brain 19:211–276

    Google Scholar 

  • Heald S, Siebers RW, Maling TJ (1989) K-complex vasoconstrictor response: evidence for central vasomotor downregulation in borderline hypertension. J Hypertens Suppl 7:S28–S29

    CAS  PubMed  Google Scholar 

  • Hobson AR, Chizh B, Hicks K et al (2010) Neurophysiological evaluation of convergent afferents innervating the human esophagus and area of referred pain on the anterior chest wall. Am J Physiol Gastrointest Liver Physiol 298:G31–G36

    CAS  PubMed  Google Scholar 

  • Hornung OP, Regen F, Danker-Hopfe H et al (2007) The relationship between REM sleep and memory consolidation in old age and effects of cholinergic medication. Biol Psychiatry 61:750–757

    CAS  PubMed  Google Scholar 

  • Hornyak M, Cejnar M, Elam M et al (1991) Sympathetic muscle nerve activity during sleep in man. Brain 114:1281–1295

    PubMed  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ, Tononi G (2006) Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9:1169–1176

    CAS  PubMed  Google Scholar 

  • Hughes HC, Mullikin WH (1984) Brainstem afferents to the lateral geniculate nucleus of the cat. Exp Brain Res 54:253–258

    CAS  PubMed  Google Scholar 

  • Johnson LC, Karpan WE (1968) Autonomic correlates of the spontaneous K-complex. Psychophysiology 4:444–452

    CAS  PubMed  Google Scholar 

  • Kattler H, Dijk DJ, Borbély AA (1994) Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res 3:159–164

    CAS  PubMed  Google Scholar 

  • Keisler A, Ashe J, Willingham DT (2007) Time of day accounts for overnight improvement in sequence learning. Learn Mem 14:669–672

    PubMed  Google Scholar 

  • Krueger JM, Obál F (1993) A neuronal group theory of sleep function. J Sleep Res 2:63–69

    CAS  PubMed  Google Scholar 

  • Krueger JM, Rector DM, Roy S et al (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9:910–919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Ping T (2019) Local sleep. Sleep Med Rev 43:14e21

    Google Scholar 

  • Kuo DC, Krauthamer GM, Yamasaki DS (1981) The organization of visceral sensory neurons in thoracic dorsal root ganglia (DRG) of the cat studied by horseradish peroxidase (HRP) reaction using the cryostat. Brain Res 208:187–191

    CAS  PubMed  Google Scholar 

  • Lavrova VD, Busygina II, Pigarev IN (2019) Otrajenie aktivnosti serdca v electroencefalogramme koshek v periodi medlennogo sna (Heartbeat-evoked responses on EEG in slow wave sleep in cats). Sensornie Systemi 33:70–76

    Google Scholar 

  • Lo JC, Groeger JA, Santhi N et al (2012) Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS One 7:e45987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mander BA, Santhanam S, Saletin JM et al (2011) Wake deterioration and sleep restoration of human learning. Curr Biol 21:R183–R184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manganotti A, Palermo S, Patuzzo G et al (2001) The role of sleep in learning and memory. Science 294:1048–1052

    Google Scholar 

  • Maric A, Montvai E, Werth E et al (2017) Insufficient sleep: enhanced risk-seeking relates to low local sleep intensity. Ann Neurol 82:409–418

    PubMed  Google Scholar 

  • Mascetti GG (2016) Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives. Nat Sci Sleep 8:221–238

    PubMed  PubMed Central  Google Scholar 

  • McCoyand G, Strecker RE (2011) The cognitive cost of sleep lost. Neurobiol Learn Mem 96:564–582

    Google Scholar 

  • McDermott CM, LaHoste GJ, Chen C et al (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23:9687–9695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitler MM, Carskadon MA, Czeisler CA et al (1988) Catastrophes, sleep, and public policy: consensus report. Sleep 11:100–109

    CAS  PubMed  Google Scholar 

  • Monstad P, Guilleminault C (1999) Cardiovascular changes associated with spontaneous and evoked K-complexes. Neurosci Lett 263:211–213

    CAS  PubMed  Google Scholar 

  • Mukhametov LM (1984) Sleep in marine mammals. Exp Brain Res 8:227–238

    Google Scholar 

  • Mukhametov LM (1987) Unihemispheric slow-wave sleep in the Amazonian dolphin, Inia geoffrensis. Neurosci Lett 79(1–2):128–132

    CAS  PubMed  Google Scholar 

  • Mukhametov LM, Supin AY, Polyakova IG (1977) Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res 134:581–584

    CAS  PubMed  Google Scholar 

  • Nedergaard M (2013) Garbage truck of the brain. Science 340:1529–1530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niiyama Y, Sato N, Katsuzava O et al (1996) Electrophysiological evidence suggesting that sensory stimuli of unknown origin induced spontaneous K-complexes. Electroencephalogr Clin Neurophysiol 98:394–400

    CAS  PubMed  Google Scholar 

  • Okada H, Iwase S, Mano T, Sugiyama Y, Watanabe T (1991) Changes in muscle sympathetic nerve activity during sleep in humans. Neurology 411:1961–1966

    Google Scholar 

  • Oleksenko AI, Mukhametov LM, Polyakova IG et al (1992) Unihemispheric sleep deprivation in bottlenose dolphins. J Sleep Res 1(1):40–44

    CAS  PubMed  Google Scholar 

  • Oniani TN, Koridze MG, Kavkasidze MG et al (1974) Dinamika vosbudimosti rasnich struktur mosga v rasnii fasyi cikla bodrstvovanie-son (The dynamics in excitability of various brain structures during different phases of wakefulness-sleep cycle). In: Oniani TN (ed) Neirofiziologia emotsii i tsikla bodrstvovanie-son. Metsniereba, Tbilisi, pp 120–159

    Google Scholar 

  • Pampiglione G, Ackner B (1958) The effects of repeated stimuli upon EEG and vasomotor activity during sleep in man. Brain 81:64–74

    CAS  PubMed  Google Scholar 

  • Parker CG, Dailey MJ, Phillips H et al (2020) Central sensory-motor crosstalk in the neural gut-brain axis auton, vol 225. Basic and Clin, Neurosci, p 102656. https://doi.org/10.1016/j.autneu.2020.102656

    Book  Google Scholar 

  • Patton HD, Amassian VE (1952) Cortical projection zone of chorda tympani nerve in cat. J Neurophysiol 15:245–254

    CAS  PubMed  Google Scholar 

  • Pavlov IP (1954) Klinicheskie sredi Pavlova (Pavlov’s clinical Wednesdays) 1931–1933. In: M.-L: Isd-vo AN SSSR, vol 1. Publishing house of Soviet Academy of Sciences, Moscow, pp 104–105, 164–165, 2

    Google Scholar 

  • Peles SH, Miranda A, Shaker R et al (2004) Acute nociceptive somatic stimulus sensitizes neurons in the spinal cord to colonic distension in the rat. J Physiol 560:291–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry MJ, Lawson SN (1998) Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience 85:293–310

    CAS  PubMed  Google Scholar 

  • Pigarev IN (1994) Neurons of visual cortex respond to visceral stimulation during slow wave sleep. Neuroscience 62:1237–1243

    CAS  PubMed  Google Scholar 

  • Pigarev IN (1997) Partial sleep in cortical areas. WFSRS Newsl 5:7–8

    Google Scholar 

  • Pigarev IN (2014) The visceral theory of sleep. Neurosci Behav Physiol 44:421–434

    Google Scholar 

  • Pigarev IN, Pigareva ML (2012) Sleep and control of visceral functions. Neurosci Behav Physiol 42:948–956

    CAS  Google Scholar 

  • Pigarev IN, Pigareva ML (2019) Historical view on the attempts to understand the function of sleep in the school of Ivan Pavlov and his Russian forerunners and followers. Clin Transl Neurosci 3(1):2514183X1983476

    Google Scholar 

  • Pigarev IN, Nothdurft H-C, Kastner S (1997) Evidence for asynchronous development of sleep in cortical areas. Neuroreport 8:2557–2560

    CAS  PubMed  Google Scholar 

  • Pigarev IN, Almirall H, Marimon J et al (2004) Dynamic pattern of the viscero-cortical projections during sleep. Study in New Zealand rabbits. J Sleep Res 13(Suppl.1):574–575

    Google Scholar 

  • Pigarev IN, Almirall H, Pigareva ML et al (2006) Visceral signals reach visual cortex during slow wave sleep: study in monkeys. Acta Neurobiol Exp 66:69–73

    Google Scholar 

  • Pigarev IN, Almirall H, Pigareva ML (2008) Cortical evoked responses to magnetic stimulation of macaque’s abdominal wall in sleep-wake cycle. Acta Neurobiol Exp 68:91–96

    Google Scholar 

  • Pigarev IN, Fedorov GO, Levichkina EV et al (2011) Visually triggered K-complexes: a study in New Zealand rabbits. Exp Brain Res 210:131–142

    CAS  PubMed  Google Scholar 

  • Pigarev IN, Bagaev VA, Levichkina EV et al (2013) Cortical visual areas process intestinal information during the periods of slow-wave sleep. Neurogastroenterol Motil 25:268–e169

    CAS  PubMed  Google Scholar 

  • Pigarev IN, Bibikov NG, Busygina II (2016a) Changes in the intragastric environment during sleep affect the statistical characteristics of neuron activity in the cerebral cortex. Neurosci Behav Physiol 46:64–72

    Google Scholar 

  • Pigarev I, Pigareva ML, Lavrova VD et al (2016b) Spinal cord fibers, transmitting somatic information in wakefulness, are engaged in transmission of the visceral information during sleep. 23rd Congr the Eur Sleep Res Soc 140. http://www.esrs-congress.eu/2016.html

  • Plihal W, Born J (1997) Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci 9:534–547

    CAS  PubMed  Google Scholar 

  • Ratcliff R, Van Dongen HPA (2009) Sleep deprivation affects multiple distinct cognitive processes. Psychon Bull Rev 16:742–751

    PubMed  PubMed Central  Google Scholar 

  • Rattenborg NC, Lima SL, Lesku JA (2012) Sleep locally, act globally. Neuroscientist 18(5):533–546

    PubMed  Google Scholar 

  • Rechtshaffen A, Bergmann BM (2002) Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25:18–24

    Google Scholar 

  • Rector DM, Topchiy IA, Carter KM, Rojas MJ (2005) Local functional state differences between rat cortical columns. Brain Res 1047:45–55

    CAS  PubMed  Google Scholar 

  • Reis J, Fischer JT, Prichard G et al (2015) Time–but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cereb Cortex 25(1):109–117

    PubMed  Google Scholar 

  • Rigas P, Castro-Alamancos MA (2007) Thalamo-cortical up states: different effects of intrinsic and extrinsic cortical inputs on persistent activity. J Neurosci 27:4261–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson EM, Pascual-Leone A, Press DZ (2004) Awareness modifies the skill-learning benefits of sleep. Curr Biol 14:208–212

    CAS  PubMed  Google Scholar 

  • Rozjanskiy NA (1954) Materialii fisiologii sna (Materials to sleep physiology). In: M.: Gos. Isd-vo med literaturi. Publishing House of Medical Literature, Moscow

    Google Scholar 

  • Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034

    CAS  PubMed  Google Scholar 

  • Saxvig IW, Lundervold AJ, Gronli J (2008) The effect of a REM sleep deprivation procedure on different aspects of memory function in humans. Psychophysiology 45:309–317

    PubMed  Google Scholar 

  • Shadmehr R, Brashers-Krug T (1997) Functional stages in the formation of human long-term motor memory. J Neurosci 17:409–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siclari F, Tononi G (2017) Local aspects of sleep and wakefulness. Curr Opin Neurobiol 44:222–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siengsukon CF, Boyd LA (2008) Sleep enhances implicit motor skill learning in individuals poststroke. Top Stroke Rehabil 15:1–12

    PubMed  Google Scholar 

  • Smith C (2001) Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5:491–506

    CAS  PubMed  Google Scholar 

  • Song S, Howard JH, Howard DV (2007) Sleep does not benefit probabilistic motor sequence learning. J Neurosci 27:12475–12483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    CAS  PubMed  Google Scholar 

  • Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437:1272–1278

    CAS  PubMed  Google Scholar 

  • Tank J, Diedrich A, Hale N et al (2003) Relationship between blood pressure, sleep K-complexes, and muscle sympathetic nerve activity in humans. Am J Physiol Regul Integr Comp Physiol 285:R208–R214

    CAS  PubMed  Google Scholar 

  • Timofeev I, Grenier F, Bazhenov M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:1185–1199

    CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150

    PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  Google Scholar 

  • Voderholzer U, Piosczyk H, Holz J (2011) Sleep restriction over several days does not affect long-term recall of declarative and procedural memories in adolescents. Sleep Med 12:170–178

    PubMed  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker MP (2008) Cognitive consequences of sleep and sleep loss. Sleep Med 9:S29–S34

    PubMed  Google Scholar 

  • Walker MP (2009) The role of sleep in cognition and emotion. Ann N Y Acad Sci 1156:168–197

    PubMed  Google Scholar 

  • Walker MP, Stickgold R (2006) Sleep, memory, and plasticity. Annu Rev Psychol 57:139–166

    PubMed  Google Scholar 

  • Werth E, Achermann P, Borbely AA (1996) Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport 8:123–127

    CAS  PubMed  Google Scholar 

  • Werth E, Achermann P, Borbely AA (1997) Fronto-occipital EEG power gradients on human sleep. J Sleep Res 6:102–112

    CAS  PubMed  Google Scholar 

  • Williamson AM, Feyer A, Mattick RP et al (2000) Developing measures of fatigue using an alcohol comparison to validate the effects of fatigue on performance. Accid Anal Prev 33:313–326

    Google Scholar 

  • Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    CAS  PubMed  Google Scholar 

  • Yoo SS, Hu PT, Gujar N et al (2007) A deficit in the ability to form new human memories without sleep. Nat Neurosci 10:385–392

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very thankful to Dr. Denys Garden for critical reading of the manuscript and many helpful comments. We also thank our collaborators listed as our coauthors in the cited references. Preparation of this article was partly supported by Russian Foundation for Basic Researches grants 19-04-00215 and 17-04-00594-A.

Conflict of Interest Statement Authors declare no conflicts of interest.

Author Contributions Both coauthors have equal contribution to all steps of preparation of this article, and both approved the version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan N. Pigarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pigarev, I.N., Pigareva, M.L. (2021). Avoiding Partial Sleep: The Way for Augmentation of Brain Function. In: Opris, I., A. Lebedev, M., F. Casanova, M. (eds) Modern Approaches to Augmentation of Brain Function. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-54564-2_10

Download citation

Publish with us

Policies and ethics