Skip to main content

Dopamine in Plant Development and Redox Signaling

  • Chapter
  • First Online:
Neurotransmitters in Plant Signaling and Communication

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Several animal neurotransmitters are present in plants. They are also known to affect several aspects of plant growth and development. Owing to this a great enthusiasm is observed among investigators in finding the non-neuronal role and various components of these neurotransmitter systems in plants. One such biomediator that has generated inquisitiveness in the plant scientists is dopamine. It is a well-recognized animal neurotransmitter that belongs to a group of biogenic amines better known as Catecholamines. Several works have reported the exogenous and endogenous roles of dopamine. This review is an effort to discuss the overall position of the dopaminergic system in plants and unravel the role of dopamine in plant signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkader A, El-khawas, Elsherif N, Hassanein RA, Emam M, Hassan RE (2012) Expression of aquaporin gene (Os PIP1–3) in salt-stressed rice (Oryza sativa L.) plants pre-treated with the neurotransmitter (dopamine). Plant Omics 5(6):532–541

    Google Scholar 

  • Adams D, Mary S, RobertA LA (2011) Rapid adaptation to food availability by a dopamine-mediated morphogenetic response. Nat Commun 2(1):592. https://doi.org/10.1038/ncomms1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JF (2003) Superoxide as an obligatory, catalytic intermediate in photosynthetic reduction of oxygen by adrenaline and dopamine. Antioxid Redox Signal 5:7–14

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–99. https://doi.org/10.1146/annurev.arplant.55.031903.141701. PMID:15377225

  • Applewhite PB (1973) Serotonin and norepinephrine in plant tissues. Phytochemistry 12:191–192

    Article  CAS  Google Scholar 

  • Battersby AR, Francis RJ (1964) Alkaloid biosynthesis, part V. Experiments on opium alkaloids using 3,4-dihydroxyphenethylamine. J Chem Soc 4078–4080

    Google Scholar 

  • Battersby AR, Jones RCF, Kazlauskas R (1975) Experiments on the early steps of morphine biosynthesis. Tetrahedron Lett 1873–1876

    Google Scholar 

  • Bhattacharjee P, Chakraborty S (2018) Neurotransmitters in edible plants implications in human health Ch 22 In: Ramakrishna A, Roshchina VV (eds) Neurotransmitters in plants. Perspectives and applications, pp 387–407

    Google Scholar 

  • Brain KR (1976) Accumulation of L-DOPA in cultures from Mucuna pruriens. Plant Sci Lett 7:157–161

    Article  CAS  Google Scholar 

  • Bruhn, JG, Lundström, J (1976) Alkaloids of Carnegiea gigantea Arizonine, a new tetrahydroisoquinoline alkaloid. Lloydia 39:197–203

    Google Scholar 

  • Dai YR, Michaels PJ, Flores HE (1993) Stimulation of ethylene production by catecholamines and phenylethylamine in potato cell suspension cultures. Plant Growth Regul 12:219–222

    Article  CAS  Google Scholar 

  • Darnell J, Lodish H, Baltimore D (1990) Molecular Cell Biology, 2nd edn, Scientific American Books, New York, pp 796–798

    Google Scholar 

  • Daxenbichler ME, Van Etten CH, Hallinan EA, Earle FR, Barclay FS (1971) Seeds as sources of L-DOPA. J Med Chem 14:463–465

    Article  CAS  PubMed  Google Scholar 

  • Dixon WL (1980) Rees T (1980) Identification of the regulatory steps in glycolysis in potato tubers. Phytochemistry 19:1297–1301

    Article  CAS  Google Scholar 

  • Duffus CM, Duffus JH (1969) A possible role for cyclic AMP in gibberellic acid triggered release of alpha-amylase in barley endosperm slices. Experientia 25:581

    Article  CAS  PubMed  Google Scholar 

  • Ehsan H, Reichheld JP, Roef L, Witters E, Lardon F, Van Bockstaele D, Van Montagu M, Inze D, Van Onckelen H (1998) Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells. FEBS Lett 422:165–169. https://doi.org/10.1016/S0014-5793(97)01610-4

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Konze JR, Selman BR, Stoffer C (1976) Ethylene formation in sugar beet leaves: Evidence for the involvement of 3-hydroxytyramine and phenoloxidase after wounding. Plant Physiol 58:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endress RA, Jager A, Kreis W (1984) Catecholamine biosynthesis dependent on the dark in betacyanin-forming Portulaca callus. J Plant Physiol 115:291–295

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn JW, Steele MJ (1981) Biosynthetic and metabolic activities of some organelles in Papaver somniferum latex. Phytochemistry 20:1031

    Article  CAS  Google Scholar 

  • Feldman JM, Lee EM, Castleberry CA (1987) Catecholamine and serotonin content of foods: effect on urinary excretion of homovanillic and 5-hydroxyindoleacetic acid. J Am Diet Assoc 87:1031–1035

    CAS  PubMed  Google Scholar 

  • Fernie AR, Willmitzer L, Trethewey NR (2002)Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci 36–41

    Google Scholar 

  • Forward RB Jr (1997) Effects of neurochemicals upon a dinoflagellate photoresponse. J Protozool 24:401–405 (PMID;21286)

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Geigenberger P (2003) Regulation of sucrose to starch conversion in growing potato tubers. J Exp Bot 54:457–465

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Geiger M, Stitt M (1998) High-temperature inhibition of starch synthesis is due to inhibition of ADPGlc pyrophosphorylase by decreased levels of 3PGA in growing potato tubers. Plant Physiol 117:1307–1317.https://doi.org/10.1104/pp.117.4.1307

  • Geigenberger P, Reimholz R, Geiger M, Merlo L, Canale V, Stitt M (1997) Regulation of sucrose and starch metabolism in potato tubers in response to short term water deficit. Planta 20:502–518. https://doi.org/10.1007/s004250050095

  • Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934. https://doi.org/10.1007/BF00019503

    Article  CAS  PubMed  Google Scholar 

  • Goeschl JD, Rappaport L, Pratt HK (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41:877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes BR, Siqueira-Soares RC, Santos WD, Marchiosi R, Soares AR, Ferrarese-Filho O (2014) The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots. Plant Signal Behav 9:12 e977704. https://doi.org/10.4161/15592324.2014.977704

  • Gómez BL, Nosanchuk JD (2003) Melanin and fungi. Curr Opin Infect Dis 16:91–96

    Article  PubMed  Google Scholar 

  • Guidotti BB, Gomes BR, Cassia de Siqueiria-Soares R, Soares AR, Ferrares-Filho O (2013) The effects of dopamine on root growth and enzyme activity in soybean seedlings. Plant Signal Behav 8:e25477. https://dx.doi.org/10.4161/psb.25477

  • Guinaudeau H, Bruneton J (1993) Isoquinoline alkaloids. In: Watermann PG, Dey PM, Harborne JB (eds) Alkaloids and Sulphur compounds. Methods in plant biochemistry, vol 8. Academic Press, London, pp 373–419

    Google Scholar 

  • Hajirezaei MR, Sonnewald U, Viola R, Carlisle S, Dennis D, Stitt M (1994) Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta 192:43–55

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homeyer BC, Roberts MF (1984) Dopamine accumulation in Papaver somniferum L. Latex, Z. Naturforsch 39c:1034

    Google Scholar 

  • Hosoi K (1974) Purification and some properties of L-tyrosine carboxylase from barley roots. Plant Cell Physiol 15:429–440. https://doi.org/10.1186/1471-2229-5-1

  • Huizing HJ, Wijnsma R, Batterman S, Malingré ThM, Wichers HJ (1985) Production of L-DOPA by cell suspension cultures of Mucuna pruriens. I. Initiation and maintenance of cell suspension cultures of Mucuna pruriens and identification of L-DOPA. Plant Cell Tiss Org Cult 4:61–73

    Google Scholar 

  • Iriti M (2013) Plant neurobiology, a fascinating perspective in the field of research on plant secondary metabolites. Int J Mol Sci 14:10819–10821. https://doi.org/10.3390/ijms140610819

    Article  PubMed  PubMed Central  Google Scholar 

  • Jindra A, Kovács P, Pittnerová Z (1966) Biochemical aspects of the biosynthesis of opium alkaloids. Phytochemistry 5:1303–1315

    Article  CAS  Google Scholar 

  • Jiao X, Li Y, Zhang X, Liu C, Liang W, Li C, Ma F, Li C (2019) Exogenous Dopamine application promotes alkali tolerance of apple. Seed Plants 8:580

    Google Scholar 

  • Jung S, Kim JS, Cho KY, Tae GS, Kang BG (2000) Antioxidant responses of cucumber (Cucumis sativus) to photoinhibition and oxidative stress induced by norflurazon under high and low PPFDs. Plant Sci 153(2):145–154

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka S (1973) Requirement of cotyledons for gibberelic acid-induced hypocotyl elongation in lettuce seedlings. Isolation of the cotyledon factor active in enhancing the effect of gibberellic acid. Plant and Cell Physiol 14(4):747–755. https://doi.org/10.1093/oxfordjournals.pcp.a074908

  • Kamisaka S, Shibata K (1982) Identification in lettuce seedlings of a catecholamine active in synergistically enhancing the gibberellin effect on lettuce hypocotyl elongation. Plant Growth Regul 1:3–10. https://doi.org/10.1007/BF00024216

    Article  CAS  Google Scholar 

  • Kamo KK, Mahlberg PG (1984) Dopamine biosynthesis at different stages of plant development in Papaver somniferum. J Nat Prod 47(4):682–686

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant, in cavendish banana. J Agricul Food Chem 48:844–8. https://dx.doi.org/10.1021/jf9909860. PMID:10725161

  • Katagiri F, Lam E, Chua NH (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340:727–730. https://doi.org/10.1038/340727a0

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Qidwai T, Shukla RK, Gupta V (2013) Alkaloids derived from tyrosine: modified Benzyltetrahydroisoquinoline alkaloids. In: Ramawat K Mérillon JM (eds) Natural products. Springer, Berlin, Heidelberg, pp 405–460. https://doi.org/10.1007/978-3-642-22144-6_15

  • Klegeris A, Korkina LG, Greenfield SA (1995) Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions. Free Radic Biol Med 18:215–22. https://doi.org/10.1016/0891-5849(94)00141-6. PMID:7744304

  • Konovalov DA (2018) Neurotransmitters in Medicinal Plants ch 20. In: Ramakrishna A, Roshchina V (eds) Neurotransmitters in plants. Perspectives and Applications, pp 331–356

    Google Scholar 

  • Kuklin AI, Conger BV (1995) Catecholamines in plants. J Plant Growth Regul 14:91–97

    Article  CAS  Google Scholar 

  • Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433–440. https://doi.org/10.1016/j.plantsci.2006.10.013

    Article  CAS  Google Scholar 

  • Laukens K, Roef L, Witters E, Slegers H, Van Onckelen H (2002) Cyclic AMP affinity purification and ESI-QTOF MS-MS identification of cytosolic glyceraldehydes 3-phosphate dehydrogenase and two nucleoside diphosphate kinase isoforms from tobacco BY-2 cells. Planta 214:510–520. https://doi.org/10.1007/s004250100644

    Article  CAS  Google Scholar 

  • Lawton MA, Yamamoto RT, Hanks SK, Lamb CJ (1989) Molecular cloning of plant transcripts encoding protein kinase homologs. Proc Natl Acad Sci USA 86:3140–3144

    Article  CAS  PubMed  Google Scholar 

  • Leete E, Murrill JB (1964) The incorporation of dopamine into chelidonine and morphine. Tetrahedron Lett 147–151

    Google Scholar 

  • Leng Q, Mercier RW, Fao W, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–6110

    Google Scholar 

  • Li C, Sun XK, Chang C, JiaDF WZW, Li CY, Ma FW (2015) Dopamine alleviates salt-induced stress in Malus hupehensis. Physiol Plant 153:584–602

    Article  CAS  PubMed  Google Scholar 

  • Liang BW, Gao TT, Zhao Q, Ma CQ, ChenQ WZW, Li CY, Li C, Ma FW (2018) Effects of exogenous dopamine on the uptake, transport, and resorption of apple ionome under moderate drought. Front Plant Sci 9:755. https://doi.org/10.3389/fpls.2018.00755

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang BW, Li CY, Ma CQ, Wei ZW, Wang Q, Huang D et al (2017) Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis. Plant Physiol Biochem 119:346–359. https://doi.org/10.1016/j.plaphy.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  • Luedtke RR, Freeman RA, Martin MW, Bastien JW, Zalles-Asin J, Reinecke MG (2002) Pharmacological survey of medicinal plants for activity at dopamine receptor subtypes. I. Activation of D1-like receptor linked adenylyl cyclase. Pharm Biol 40:315–325. https://doi.org/10.1076/phbi.40.4.315.8463

  • Luedtke RR, Freeman RA, Volk M, Arfan M, Reinecke MG (2003) Pharmacological survey of medicinal plants for activity at dopamine receptor subtypes. II. Screen for binding activity at the D1 and D2 dopamine receptor subtypes. Pharm Biol 41:45–58. https://doi.org/10.1076/phbi.41.1.45.14695

  • Lundström J, Agurell S (1971) Biosynthesis of mescaline and tetrahydroisoquinoline alkaloids in Lophophora williamsii (Lem) Coult. Acta Pharm Suec 8:261–274 (PMID:5560271)

    PubMed  Google Scholar 

  • Lunn J, Mac Rae E (2003) New complexities in the synthesis of sucrose. Curr Opin Plant Biol 6:208–214

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212

    Google Scholar 

  • Malikina KD, Shishov VA, Chuvelev DI, Kudrin VS, Oleskin AV (2010) Regulatory role of neuromediator amines in Sacchromyces cerevisiae cells. Appl Biochem Micro 46(6):672–677

    Article  CAS  Google Scholar 

  • Matsumoto H (2011) The mechanisms of phytotoxic action and selectivity of non-protein aromatic amino acids L-DOPA and m-tyrosine. J Pestic Sci 36:1–8

    Article  CAS  Google Scholar 

  • Nelson TA, Lee DJ, Smith BC (2003) Are green tides harmful algal blooms? Toxic properties of water soluble extracts from two bloom forming macroalgae, Ulva fenestrata and Ulva obscura (Ulvophyceae). J Phycol 39:874–879

    Article  CAS  Google Scholar 

  • Neubauer D (1964) Distribution of the major alkaloids of the opium poppy in the various parts of the plant at different stages of development. Planta Med 12:43–50

    Article  CAS  Google Scholar 

  • O’Dowd BF (1993) Structures of dopamine receptors. J Neurochem 60:804–816

    Article  PubMed  Google Scholar 

  • Obata-Sasamoto H, Nishi N, Komamine A (1981) Mechanism of suppression of DOPA-accumulation in a callus culture of Stizolobium hassjoo. Plant Cell Physiol 22:827–835

    CAS  Google Scholar 

  • Obata-Sasamoto H, Komamine A (1983) Effect of culture conditions on DOPA-accumulation in a callus culture ofStizolobium hassjoo. Planta Med 49:120–123

    Article  CAS  PubMed  Google Scholar 

  • Odjakova M, Hadjiivanova C (1997) Animal neurotransmitter substances in plants. Bulg J Plant Physiol 23(1–2):94–102

    CAS  Google Scholar 

  • Paul AG (1973) Biosynthesis of peyote alkaloids. Llyodia 36:36–45

    CAS  Google Scholar 

  • Ponchet M, Martin-Tanguy J, Marais A, Martin C (1982) Hydroxycinnamoyl acid amides and aromatic amines in the inflorescences of some Araceae species. Phytochemistry 21:2865–2869

    Article  CAS  Google Scholar 

  • Protacio CM, Dai YR, Lewis EF, Flores HE (1992) Growth-stimulation by catecholamines in plant-tissue organ-cultures. Plant Physiol 98:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards H, Das S, Smith CJ, Pereira L, Geisbrecht A, Devitt NJ, Games DE, van Geyschem J, Gareth Brenton A, Newton RP (2002) Cyclic nucleotide content of tobacco BY-2 cells. Phytochemistry 61:531–537. https://doi.org/10.1016/S0031-9422(02)00266-2

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF, Antoun MD (1978) The relationship between L-DOPA decarboxylase in the latex of Papaver somniferum and alkaloid formation. Phytochemistry 17:1083–1087

    Article  CAS  Google Scholar 

  • Roberts MF, McCarthy D, Kutchan TM, Coscia CJ (1983) Localisation of enzymes and alkaloidal metabolites in Papaver. Arch Biochem Biophys 222:599

    Article  CAS  PubMed  Google Scholar 

  • Rosei MA, Blarzino C, Foppoli C, Mosca L, Coccia R (1994) Lipoxygenase-catalyzed oxidation of catecholamines. Biochem Biophys Res Commun 200:344–350

    Google Scholar 

  • Roshchina VV (1990) Biomediators in chloroplasts of higher plants. 3. Effect of dopamine on photochemical activity. Photosynthetica 24:117–121

    Article  CAS  Google Scholar 

  • Roshchina VV (2018a) Neurotransmitters in plant life. Science Publishers, Inc, Enfield, pp 292

    Google Scholar 

  • Roshchina VV (2018b) Possible role of biogenic amines in plant–animal relations. Ch 17. In: Ramakrishna A, Roshchina VV (eds) Neurotransmitters in plants: perspectives and applications, pp 281–289

    Google Scholar 

  • Roshchina VV, Melnikova EV (1998) Pollen-pistil interaction: response on chemical signals. Biol. Bull 25(6):678–685

    Google Scholar 

  • Roshchina VV (1991) Biomediators in plants. Acetylcholine and biogenic amines. Biological Center of USSR Academy of Sciences, Pushchino, p 192

    Google Scholar 

  • Skirycz A, ÅšwiÄ™drych A, Szopa J (2005) Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biol 5:1471–2229

    Article  CAS  Google Scholar 

  • Smith TA (1977) Phenethylamine and related compounds in plants. Phytochemistry 16:9–18

    Google Scholar 

  • Smith TA (1980) Plant amines. In: Bell EA, Charlwood BV (eds) Secondary plant products Encyclopedia of plant physiol new series, vol 8. Springer, Berlin, pp 433–460

    Google Scholar 

  • Soares AR, Marchiosi RR, Siqueira-Soares RC, Barbosa de Lima R, Santos WD, Ferrarese-Filho O (2014) The role of L-DOPA in plants. Plant Signal Behav 9:e28275

    Google Scholar 

  • Sokoloff P, Schwartz J-C (1995) Novel dopamine receptors half a decade later. TIPS 16:270–275

    CAS  PubMed  Google Scholar 

  • Stitt M, Lilley RM, Gerhart R, Heldt WW (1994) Metabolite levels in specific wells and subcellular compartments of plant leaves. Met Enzymol 174:518–552

    Article  Google Scholar 

  • Swiedrych A, Lorenc-KukulaK SA, Szopa J (2004) The catecholamine biosynthesis route in potato is affected by stress. Plant Physiol Biochem 42:593–600

    Article  CAS  PubMed  Google Scholar 

  • Szopa J, WilczyÅ„ski G, Fiehn O, Wenczel A, Willmitzer L (2001) Identification and quantification of catecholamines in potato plants (Solanum tuberosum) by GC-MS. Phytochemistry 58:315–320

    Article  CAS  PubMed  Google Scholar 

  • Tauberger E, Fernie AR, Emmermann M, Renz A, Kossmann J, Willmitzer L, Trethewey RN (2000) Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. Plant J 23:43–53. https://doi.org/10.1046/j.1365-313x.2000.00783.x

    Article  CAS  PubMed  Google Scholar 

  • Tocher RD, Tocher CS (1972) DOPA decarboxylase in Cytisus scoparius. Phytochem 11:1661–1667

    Article  CAS  Google Scholar 

  • Tocher RD, Meeuse BJD (1966) Enzymes of marine algae: studies on phenolase in the green alga, Monostroma fuscum. Can J Bot 44:551–554

    Article  CAS  Google Scholar 

  • Tretyn A, Kendrick RE (1991) Acetylcholine in plants: presence, metabolism and mechanism of action. Bot Rev 57:33–73

    Google Scholar 

  • Troppmann B, Walz B, Blenau W (2007) Pharmacology of serotonin-induced salivary secretion in Periplanta americana. J Insect Physiol 53(8):774–781

    Article  CAS  PubMed  Google Scholar 

  • Van Alstyne K (2014) Effects of dopamine, a compound released by the green-tide macroalga Ulvaria obscura (Chlorophyta), on marine algae and invertebrate larvae and juveniles. Phycologia 53(2):195–202

    Google Scholar 

  • Van Alstyne KL, Nelson AV, Vyan JR, Cancilla DA (2006) Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148(2):304–311

    Google Scholar 

  • Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL (2018) Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555:269–273. https://doi.org/10.1038/nature25758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichers J, Visser JF, Henk J. Huizing I, Pras N (1992) Mucuna pruriens and effects of 2,4-D and NaCI on these compounds. Plant Cell Tissue Organ Culture 33:259–264, 1993

    Google Scholar 

  • Widrych A, Stachowiak J, Szopa J (2004) The catecholamine potentates starch mobilization in transgenic potato tubers. Plant Physiol Biochem 42:103–109

    Google Scholar 

  • Yen GC, Hsieh CL (1997) Antioxidant effects of dopamine and related compounds. Biosci Biotechnol Biochem 61:1646–1649. https://doi.org/10.1271/bbb.61.1646. PMID:10336274

  • Zhang KX, Wen T, Dong J, Ma FW, Bai TH, Wang K, Li CY (2016) Comprehensive evaluation of tolerance to alkali stress by 17 genotypes of apple rootstocks. J Integr Agric 15:1499–1509. https://doi.org/10.1016/S2095-3119(15)61325-9

    Article  CAS  Google Scholar 

  • Zherelova OM, Kataev AA, Grischenko VM, Shtanchaev RS, Moshkov DA, Medvedev BI (2014) Interaction of neuromediator dopamine with the ionic channels of Chara carollina cell plasmalemma. Biomedicinskij Zhurnal Medline. ru. 15(67):834–846

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Bamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bamel, K., Prabhavathi (2020). Dopamine in Plant Development and Redox Signaling. In: Baluška, F., Mukherjee, S., Ramakrishna, A. (eds) Neurotransmitters in Plant Signaling and Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-54478-2_7

Download citation

Publish with us

Policies and ethics