Skip to main content

Interactive Process Mining for Medical Training

  • Chapter
  • First Online:
Interactive Process Mining in Healthcare

Part of the book series: Health Informatics ((HI))

Abstract

This chapter is focused on introducing the basic concepts to design medical training applications using Process mining. Here we describe the POME (Process-Oriented Medical Education) methodology, which allows to incorporate in the medical training research and practice the sequence of steps as a point to consider. Its stages and steps and how they are related are described. We use as a running case a surgical procedure, the Central Venous Catheter insertion, which has been used to develop applications in medical training using Process Mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen WW, Ravikumar P, Fienberg SE. A comparison of string distance metrics for name-matching tasks. In: Proceedings of the 2003 international conference on information integration on the web, IIWEB’03. AAAI Press; Palo Alto, California, USA. 2003; p. 73–8.

    Google Scholar 

  2. De La Fuente R, Fuentes R, Munoz-Gama J, Dagnino J, Sepúlveda M. Delphi method to achieve clinical consensus for a BPMN representation of the central venous access placement for training purposes. Int J Environ Res Public Health. 2020;17(11):3889

    Article  Google Scholar 

  3. Diamond IR, Grant RC, Feldman BM, Pencharz PB, Ling SC, Moore AM, Wales PW. Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol. 2014;67(4):401–9.

    Article  Google Scholar 

  4. Fecso AB, Szasz P, Kerezov G, Grantcharov TP. The effect of technical performance on patient outcomes in surgery: a systematic review. Ann Surgery 2017;265(3):492–501.

    Article  Google Scholar 

  5. Grantcharov TP, Reznick RK. Teaching procedural skills. BMJ. 2008;336(7653):1129–31.

    Article  Google Scholar 

  6. Green JL, Suresh V, Bittar P, Ledbetter L, Mithani S, Allori A. The utilization of video technology in surgical education: a systematic review. J Surg Res. 2019;235:171–80.

    Article  Google Scholar 

  7. Hales B, Terblanche M, Fowler R, Sibbald W. Development of medical checklists for improved quality of patient care. Int J Qual Health Care J Int Soc Qual Health Care 2008;20(1):22–30.

    Article  Google Scholar 

  8. Hasson F, Keeney S, McKenna H. Research guidelines for the Delphi survey technique. J Adv Nurs. 2000;32(4):1008–15.

    Google Scholar 

  9. Hoffman RR. Human factors contributions to knowledge elicitation. Hum Factors. 2008;50(3):481–8.

    Article  Google Scholar 

  10. Huang GC, McSparron JI, Balk EM, Richards JB, Smith CC, Whelan JS, Newman LR, Smetana GW Procedural instruction in invasive bedside procedures: a systematic review and meta-analysis of effective teaching approaches. BMJ Qual Saf. 2016;25(4):281–94.

    Article  Google Scholar 

  11. Leiva L, Munoz-Gama J, Salas-Morales J, Galvez V, Lam Jonathan Lee W, de la Fuente R, Fuentes R, Sepúlveda M. Pomelog: generating event logs from unplugged processes. In: Proceedings of the Dissertation Award, Doctoral Consortium, and Demonstration Track at BPM 2019 co-located with 17th International Conference on Business Process Management (BPM 2019). 2019;2420:189–93.

    Google Scholar 

  12. Lira R, Salas-Morales J, Leiva L, de la Fuente R, Fuentes R, Delfino A, Nazal CH, Sepúlveda M, Arias M, Herskovic V, Munoz-Gama J. Process-oriented feedback through process mining for surgical procedures in medical training: The ultrasound-guided central venous catheter placement case. Int J Environ Res Public Health. 2019;16(11):1–21.

    Article  Google Scholar 

  13. McKinley RK, Strand J, Ward L, Gray T, Alun-Jones T, Miller H. Checklists for assessment and certification of clinical procedural skills omit essential competencies: a systematic review. Med Educ. 2008;42(4):338–49.

    Article  Google Scholar 

  14. Mead D, Moseley L. The use of the Delphi as a research approach. Nurse Res. 2001;8(4):4–23.

    Article  Google Scholar 

  15. Müller R, Rogge-Solti A. BPMN for healthcare processes. In: Proceedings of the 3rd central-European workshop on services and their composition (ZEUS 2011); Feb 2011.

    Google Scholar 

  16. Neumuth D, Loebe F, Herre H, Neumuth T. Modeling surgical processes: a four-level translational approach. Artif Intell Med. 2011;51(3):147–61.

    Article  Google Scholar 

  17. Okoli C, Pawlowski SD. The Delphi method as a research tool: an example, design considerations and applications. Inform Manag. 2004;42(1):15–29.

    Article  Google Scholar 

  18. Rojas E, Munoz-Gama J, Sepúlveda M, Capurro D. Process mining in healthcare: a literature review. J Biomed Inform. 2016;61:224–36.

    Article  Google Scholar 

  19. Rolón E, Chavira G, Orozco J, Soto JP. Towards a framework for evaluating usability of business process models with BPMN in health sector. Proc Manuf. 2015;3:5603–10.

    Google Scholar 

  20. Scheuerlein H, Rauchfuss F, Dittmar Y, Molle R, Lehmann T, Pienkos N, Settmacher U. New methods for clinical pathways-Business Process Modeling Notation (BPMN) and Tangible Business Process Modeling (t.BPM). Langenbeck’s Arch Surg. 2012;397(5):755–61.

    Article  Google Scholar 

  21. Sullivan ME, Yates KA, Inaba K, Lam L, Clark RE. The use of cognitive task analysis to reveal the instructional limitations of experts in the teaching of procedural skills. Acad Med. 2014;89(5):811–6.

    Article  Google Scholar 

  22. Walter AJ. Surgical education for the twenty-first century: beyond the apprentice model. Obstet Gynecol Clin. 2006;33(2):233–6.

    Article  Google Scholar 

  23. Wieringa RJ. Design science methodology for information systems and software engineering. Berlin/Heidelberg: Springer; 2014.

    Book  Google Scholar 

  24. Wingfield LR, Kulendran M, Chow A, Nehme J, Purkayastha S. Cognitive task analysis: bringing olympic athlete style training to surgical education. Surg Innov. 2015;22(4):406–17.

    Article  Google Scholar 

  25. Yates K, Sullivan M, Clark R. Integrated studies on the use of cognitive task analysis to capture surgical expertise for central venous catheter placement and open cricothyrotomy. Am J Surg. 2012;203(1):76–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Munoz-Gama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munoz-Gama, J., Galvez, V., Fuente, R.d.l., Sepúlveda, M., Fuentes, R. (2021). Interactive Process Mining for Medical Training. In: Fernandez-Llatas, C. (eds) Interactive Process Mining in Healthcare. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-53993-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53993-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53992-4

  • Online ISBN: 978-3-030-53993-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics