Skip to main content

Organic Waste for Biofuel Production: Energy Conversion Pathways and Applications

  • Chapter
  • First Online:
  • 607 Accesses

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 11))

Abstract

Global energy supply is predominantly dependent on fossil fuels, which are not only limited in availability but also harm the environment. Fossil fuel-based carbon dioxide generation has been identified as one of the main causes of the global warming phenomenon, which leads to various adverse effects. In recent years, both developed and developing countries have enhanced the share of renewable energy in overall energy scenario. Renewable energy sources are considered as a potential, reliable and environment-friendly way to substitute fossil fuels. Biomass energy has long been used for cooking and heating application; however, traditional biomass application has several drawbacks such as low energy efficiency and emission of harmful gases. Therefore, the transformation of biomass through proper technology is crucial for the development of sustainable and environmentally safe energy resources. Globally, biomass energy shares around 56.2 EJ out of the total energy supply of 560 EJ. The estimated bioenergy potential of India is around 18,000 MW. If this estimated amount of energy is achieved, the country will get rid of the energy crisis problem. This chapter provides an overview of the significance of bioenergy at the national and global levels with possible energy conversion technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acma H, Yaman S (2010) Interaction between biomass and different rank coals during co-pyrolysis. Renew Energy 35:288–292

    Google Scholar 

  • Agrawal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Google Scholar 

  • Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A (2016) Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economicevaluation.Renew Sust Energy Rev 53:1333–1347.

    Google Scholar 

  • Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902

    CAS  PubMed  Google Scholar 

  • Arthe R, Rajesh R, Rajesh EM, Rajendran S, Jeyachandran S (2008) Production of bioethanol from cellulosic cotton waste through microbial extracellular enzymatic hydrolysis and fermentation. EJEAF Che 7:2984–2992

    CAS  Google Scholar 

  • Balatinecz JJ (1983) The potential of densification in biomass utilization. In: Cote WA (eds) Biomass utilization. Nato Advanced Science Institutes Series, Vol 76, Plenum Press, Springer, Boston, MA, pp 181–190.

    Google Scholar 

  • Belotti G, de Caprariis B, de Filippis P, Scarsella M, Verdone N (2014) Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass Bioenergy 61:187–195

    CAS  Google Scholar 

  • Borras S, Franco J (2012) Global land grabbing and trajectories of agrarian change: a preliminary analysis. J Agrar Chang 12:34–59

    Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    CAS  Google Scholar 

  • Chen J, Wu Y, Xu C, Song M, Liu X (2019) Global non-fossil fuel consumption: driving factors, disparities, and trends. Manag Decis 57(4):791–810

    Google Scholar 

  • Chen L, Xing L, Han L (2009) Renewable energy from agro-residues in China: solid biofuels and biomass briquetting technology. Renew Sust Energy Rev 13(9):2689–2695

    Google Scholar 

  • Cowie A, Soimakallio S, Brandao M (2016) Environmental risks and opportunities of biofuels. In: Bouthillier YL, Cowie A, Martin P, McLeod-Kilmurray H (eds) The law and policy of biofuels. Edward Elgar, Cheltenham, United Kingdom, pp 3–29

    Google Scholar 

  • Demirbas A (2002) Analysis of liquid products from biomass via flash pyrolysis. Energy Source 24:337–345

    CAS  Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230

    CAS  Google Scholar 

  • Devi S, Gupta C, Jat SL, Parmar MS (2017) Crop residue recycling for economic and environment sustainability: the case of India. Open Agri 2. https://doi.org/10.1515/opag-2017-0053

  • Edenhofer O Pichs-Madruga R, SokonaY,Seyboth K, MatschossP,Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlomer S (2011) Renewable Energy Sources and Climate Change Mitigation, Special Report of the IPCC, IPCC. https://www.ipcc.ch/report/srren/

  • Elghali L, Clift R, Sinclair P, Panoutsou C, Bauen A (2007) Developing a sustainability framework for the assessment of bioenergy system. Energy Policy 35(12):6075–6083

    Google Scholar 

  • Energy Statistics (2019) Central Statistics Office Ministry of Statistics and Programme Implementation Government of India. www.mospi.gov.in

  • Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sust Energy Rev 13:1275–1287

    CAS  Google Scholar 

  • FAO report (2011) The state of the world’s land and water resources for food and agriculture. FAO and Earthscan/Routledge, Abingdon, UK

    Google Scholar 

  • Fischer G, Van Velthuizen H, Shah M, Nachtergaele F (2002) Global agro-ecological assessment for agriculture in the 21st century. International Institute of Applied System Analysis, Laxenburg, Austria, Rome, Italy

    Google Scholar 

  • Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a Review. Renew Sust Energy Rev 73:205–214

    CAS  Google Scholar 

  • Gercel HF (2002) The effect of a sweeping gas flow rate on the fast pyrolysis of biomass. Energy Sour 24:633–642

    CAS  Google Scholar 

  • Goel S (2008) Municipal solid waste management in India: a critical review. J Environ Sci Eng 50:319–328

    CAS  PubMed  Google Scholar 

  • Heidenreich S, Foscolo PU (2015) New concepts in biomass gasification. Prog Energy Combust Sci 46:72–95

    Google Scholar 

  • Highina B, Bugaje I, Umar B (2014) A review of second generation biofuel: a comparison of its carbon footprints. Eur J EngTechnol 2:117–125

    Google Scholar 

  • Holma A, Koponen K, Antikainen R, Lardon L, Leskinen P, Roux P (2013) Current limits of life cycle assessment framework in evaluating environmental sustainability—case of two evolving biofuel technologies. J Clean Prod 54:215–228

    Google Scholar 

  • Hupa M, Karlstrom O, Vainio E (2017) Biomass combustion technology development- It is all about chemical details. P Combust Inst 36(1):113–134

    CAS  Google Scholar 

  • Isahak WRW, Hisham MWM, Yarmo MA, Yun TYH (2012) A review on bio-oil production from biomass using pyrolysis method. Renew Sust Energy Rev 16:5910–5923

    CAS  Google Scholar 

  • Jackson RB, Friedlingstein P, Andrew RM, Canadell JG, Le Quere C, Peters GP (2019) Persistent fossil fuel growth threatens the Paris agreement and planetary health. Environ Res Lett 14(12):1–8

    Google Scholar 

  • Kahn Ribeiro S, Figueroa M, Creutzig F, Dubeux C, Hupe J, Kobayashi S (2012) Energy end-use: transport. In: Global energy assessment—Toward a sustainable future. Cambridge University Press, pp 575–648. https://doi.org/10.1017/CBO9780511793677.015

  • Karmee SK (2016) Liquid biofuels from food waste: Current trends, prospect and limitation. Renew Sust Energy Rev 53:945–953

    CAS  Google Scholar 

  • Karmee SK, Chadha A (2005) Preparation of biodiesel from crude oil of Pongamiapinnata. BioresourTechnol 96:1425–1429

    CAS  Google Scholar 

  • Karmee SK, Lin CSK (2014) Valorization of food waste to biofuel: Current trends and technological challenges. Sustain Chem Process 2(22):2–4

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C et al (2019) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham, pp 1–50. https://doi.org/10.1007/978-3-030-14463-0_1

  • Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 4:18. https://doi.org/10.1186/s40643-017-0148-6

    Article  Google Scholar 

  • Kumar S, Sharma S, Thakur S, Mishra T, Negi P, Mishra S et al (2019) Bioprospecting of microbes for biohydrogen production: Current status and future challenges. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 443–471

    Google Scholar 

  • Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581

    CAS  Google Scholar 

  • Lapuerta M, Hernández JJ, Pazo A, López J (2008) Gasification and co-gasification of biomass wastes: effect of the biomass origin and the gasifier operating conditions. Fuel Process Technol 89:828–837

    CAS  Google Scholar 

  • Luque R, Clark JH (2013) Valorization of food residues: waste to wealth using green chemical technologies. Sustain Chem Process 1:10

    Google Scholar 

  • Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX (2004) An experimental study on biomass air-steam gasification in a fluidized bed. BioresourTechnol 95:95–101

    CAS  Google Scholar 

  • Martinez EJ, Raghavan V, Gonzalez-Andres F, Gomez X (2015) New biofuel alternatives: Integrating waste management and single cell oil production. Int J Mol Sci 16:9385–9405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maschio G, Lucchesi A, Stoppato G (1994) Production of syngas from biomass. Bioresour Technol 48:119–126

    CAS  Google Scholar 

  • Mathews JA (2008) Is growing biofuel crops a crime against humanity? Biofuel Bioprod Biorefin 2(2):97–99

    CAS  Google Scholar 

  • Matsakas L, Kekos D, Loizidou M, Christakopoulos P (2014) Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol Biofuels 7(1):4–14

    PubMed  PubMed Central  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorellaprotothecoides. J Biotechnol 110:85–93

    CAS  PubMed  Google Scholar 

  • Nalladurai K, Vance Morey R (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33(3):337–359

    Google Scholar 

  • Narváez I, Orío A, Aznar MP, Corella J (1996) Biomass gasification with air in an atmospheric bubbling fluidized bed effect of six operational variables on the quality of the produced raw gas. Ind Eng Chem Res 35(7):2110–2120

    Google Scholar 

  • Nasir IM, Ghazi TIM, Omar R (2012) Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl Microbiol Biotechnol 95:321–329

    Google Scholar 

  • Nordic Energy Research (2019) Report on Food waste to Biofuels. 28 Feb 2019

    Google Scholar 

  • Oladosu G, Msangi S (2013) Biofuel-food market interactions: a review of modeling approaches and findings. Agriculture 3:53–71

    Google Scholar 

  • Pandey SK, Tyagi P, Gupta AK (2007) Municipal solid waste management in Ghazipur city- a case study. J Agric Biol Sci 2:41–43

    Google Scholar 

  • Papacz W (2011) Biogas as vehicle fuel: a European overview. J KONES Powertrain Transp 18(1):7–49

    Google Scholar 

  • Parthasarathy P, Narayanan KS (2014) Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield-a review. Renew Energy 66:570–579

    CAS  Google Scholar 

  • Petrus L, Noordermeer MA (2006) Biomass to biofuels, a chemical perspective. Green Chem 8:861–867

    CAS  Google Scholar 

  • Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76

    CAS  Google Scholar 

  • Pleissner D, Kwan TH, Lin CSK (2014) Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour Technol 158:48–54

    CAS  PubMed  Google Scholar 

  • Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. BioresourTechnol 137:139–146

    CAS  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rakos M, Fari M (2014) The effect of bioenergy expansion: food, energy and environment. Renew Sust Energy Rev 32:559–578

    Google Scholar 

  • Putun AE (2002) Biomass to bio-oil via fast pyrolysis of cotton straw and stalk. Energy Sour 24:275–285

    CAS  Google Scholar 

  • Rashad AH (2013) Biomass production for energy in India: review. J Technol Innov Ren Energy 2:366–375

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019b) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019c) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9

  • Ravindra NH (2005) Assessment of sustainable non-plantation biomass resource potential for energy in India. Centre for sustainable Technologies Indian Institute of Science, Bangalore

    Google Scholar 

  • Ruiz JA, Juárez MC, Morales MP, Muñoz P, Mendívil MA (2013) Biomass gasification for electricity generation: review of current technology barriers. Renew Sust Energy Rev 18:174–183

    CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    CAS  PubMed  Google Scholar 

  • Shrestha S, Chaulagain NP, Shrestha KR (2017) Biogas production for organic waste management: a case study of canteen’s organic waste in solid waste management technical support centre, Lalitpur, Nepal. J Environ Sci Technol 5. https://doi.org/10.3126/njes.v5i0.22714

  • Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony E, Fennell P (2016) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977

    CAS  Google Scholar 

  • Singh NB, Kumar A, Rai S (2014) Potential production of bioenergy from biomass in an Indian perspective. Renew Sust Energy Rev 39:65–78

    Google Scholar 

  • Somayeh F, Mohsen AM, Johann FG (2016) A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Res J 12:483–495

    Google Scholar 

  • Srivastava R, Krishna V, Sonkar I (2014) Characterization and management of municipal solid waste: a case study of Vanaras city, India. Int J Curr Res Acad Rev 2:10–16

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. BioresourTechnol 83:1–11

    CAS  Google Scholar 

  • Thompson BP (2012) The agricultural ethics of biofuels: the food vs Fuel Debate. Agriculture 2:339–358

    Google Scholar 

  • Tomei J, Helliwell R (2016) Food versus fuel? Going beyond biofuels. Land Use Policy 56:320–326

    Google Scholar 

  • Tuteja J, Choudhary H, Nishimura S, Ebitani K (2014) Direct synthesis of 1,6-Hexanediol from HMFover a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source. Chem Sus Chem 7:96–100

    CAS  Google Scholar 

  • Tuteja J, Nishimura S, Ebitani K (2012) One-pot synthesis of furans from various saccharides using a combination of solid acid and base catalysts. Bull Chem Soc Jpn 85:275–281

    CAS  Google Scholar 

  • Uduak GA, Adamu AA, Udeme JJI (2008) Production of ethanol fuel from Organic and food wastes. Leonardo El J PractTechnol 13:1–11

    Google Scholar 

  • UN Food and Agriculture Organization (FAO) (2016) Food outlook, biennial report on global food markets. FAO, Rome, Italy

    Google Scholar 

  • USEPA (2002) A comprehensive analysis of biodiesel impacts on exhaust emissions. US Environmental Protection Agency (EPA), Washington DC, USA, p 2002

    Google Scholar 

  • Weldemichael Y, Assefa G (2016) Assessing the energy production and GHG (greenhouse gas) emissions mitigation potential of biomass resources for Alberta. J Clean Prod 112:4257–4264

    CAS  Google Scholar 

  • Wen Z, Johnson MB (2009) Microalgae as a feedstock for Biofuel production, Virginia Cooperative extension, Publication No. 442–886

    Google Scholar 

  • Werther J, Saenger M, Hartge E-U, Ogadab T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26:1–27

    CAS  Google Scholar 

  • Whitty KJ, Zhang HR, Eddings EG (2008) Emissions from syngas combustion. Comb Sci Technol 180:1117–1136

    CAS  Google Scholar 

  • World Energy Council (2019) World energy scenario: exploring innovation pathways to 20140 Cornhills London, United Kingdom, pp 62–64

    Google Scholar 

  • Xu Y, Hu Y, Peng Y, Yao L, Dong Y, Yang B, Song R (2019) Catalytic pyrolysis and liquefaction behaviour of micro-algae for bio oil production.BioresTechnol. https://doi.org/10.1016/j.biortech.2019.122665

  • Xue J, Grift T, Hansen A (2011) Effect of biodiesel on engine performance and emissions. Renew Sust Energy Rev 15:1098–1116

    CAS  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, USA

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer International Publishing, Cham

    Google Scholar 

  • Yan S, Li J, Chen X, Wu J, Wang P, Ye J, Yao J (2011) Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renew Energy 36:1259–1265

    CAS  Google Scholar 

  • Yang Q, Chen GQ (2013) Greenhouse gas emissions of corn—Ethanol production in China. Ecol Model 252:176–184

    CAS  Google Scholar 

  • Yang X, Lee JH, Yoo HY, Shin HY, Thapa LP, Park C, Kim SW (2014) Production of bioethanol and biodiesel using instant noodle waste. Bioproc Biosyst Eng. https://doi.org/10.1007/s00449-014-1135-3

    Article  Google Scholar 

  • Yang X, Lee SJ, Yoo HY, Choi HS, Park C, Kim SW (2014) Biorefinery of instant noodle waste to biofuels. Bioresour Technol 159:17–23

    CAS  PubMed  Google Scholar 

  • Yu HW, Samini Z, Hanson A, Smith G (2002) Energy recovery from grass using two-phase anaerobic digestion. Waste Manage 22:1–5

    CAS  Google Scholar 

  • Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Kapahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, V.V., Kapahi, M., Rani, R., Tuteja, J., Banga, S., Pandey, V. (2020). Organic Waste for Biofuel Production: Energy Conversion Pathways and Applications. In: Yadav, A.N., Rastegari, A.A., Yadav, N., Gaur, R. (eds) Biofuels Production – Sustainability and Advances in Microbial Bioresources. Biofuel and Biorefinery Technologies, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-53933-7_13

Download citation

Publish with us

Policies and ethics