Skip to main content

Iron-rich High Entropy Alloys

  • Chapter
  • First Online:
High-Performance Ferrous Alloys

Abstract

The design of iron-rich high-entropy alloys is discussed. Both substitutional and interstitial alloying elements are considered. The study of iron-rich high-entropy alloys by computational simulations based on alloy theory such as thermodynamic modeling and density functional based studies of alloy energetics and alloy excitations as well as the wide range of experimental techniques for synthesis, processing, and characterization of high-entropy alloys are reviewed. It is shown that by optimizing the alloy composition, while maintaining a high iron content, it is possible to utilize mechanisms that are highly effective in advanced steels, such as transformation- and twinning-induced plasticity and grain refining, to achieve superior mechanical properties. An outlook for further iron-rich alloy development concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

AIMD:

Ab initio molecular dynamics

APT:

Atom probe tomography

BCC:

Body-centered cubic

CALPHAD:

Calculation of phase diagrams

CE:

Cluster expansion

CPA:

Coherent potential approximation

DFT:

Density functional theory

DP:

Dual phase

EBSD:

Electron back scatter diffraction

ECC:

Electron channeling contrast

EDS:

Energy-dispersive X-ray spectroscopy

EMTO:

Exact muffin-tin orbital method

EPMA:

Electron probe microanalysis

FCC:

Face-centered cubic

FIB:

Focused ion beam

HCP:

Hexagonal-close packed

HEA:

High-entropy alloy

iHEA:

Interstitial high-entropy alloy

KKR:

Korringa-Kohn-Rostoker

LAM:

Laser additive manufacturing

LMD:

Laser metal deposition

RAP:

Rapid alloy prototyping

SEM:

Scanning electron microscope

SLM:

Selective laser melting

SPR:

Spin-polarized relativistic

SQS:

Special quasi-random structures

TCFE-9:

Thermo-Calc iron database, version 9

TCHEA1:

Thermo-Calc high-entropy alloy database version 1

TCHEA2:

Thermo-Calc high-entropy alloy database version 2

TEM:

Transmission electron microscopy

TRIP:

Transformation-induced plasticity

TRIP-DP :

Transformation-induced plasticity-assisted dual-phase

TWIP:

Twinning-induced plasticity

XRD:

X-ray diffraction

References

  1. J.W. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  2. B. Cantor et al., Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)

    Article  CAS  Google Scholar 

  3. Y. Zhang et al., Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)

    Article  CAS  Google Scholar 

  4. Z. Li et al., Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016)

    Article  CAS  Google Scholar 

  5. F. Otto et al., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61(15), 5743–5755 (2013)

    Article  CAS  Google Scholar 

  6. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  CAS  Google Scholar 

  7. Y.P. Wang, B.S. Li, H.Z. Fu, Solid solution or Intermetallics in a high-entropy alloy. Adv. Eng. Mater. 11(8), 641–644 (2009)

    Article  CAS  Google Scholar 

  8. F. Otto et al., Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40–52 (2016)

    Article  CAS  Google Scholar 

  9. C.C. Tasan et al., Composition dependence of phase stability, deformation mechanisms, and mechanical properties of the CoCrFeMnNi high-entropy alloy system. JOM 66(10), 1993–2001 (2014)

    Article  CAS  Google Scholar 

  10. F. Otto et al., Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61(7), 2628–2638 (2013)

    Article  CAS  Google Scholar 

  11. M.J. Yao et al., A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5–8 (2014)

    Article  CAS  Google Scholar 

  12. Y. Deng et al., Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124–133 (2015)

    Article  CAS  Google Scholar 

  13. Z. Li et al., A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323–335 (2017)

    Article  CAS  Google Scholar 

  14. K.G. Pradeep et al., Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng. A 648, 183–192 (2015)

    Article  CAS  Google Scholar 

  15. T. Niendorf et al., Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scr. Mater. 143, 63–67 (2018)

    Article  CAS  Google Scholar 

  16. S.S. Nene et al., Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Sci. Rep. 7(1), 16167 (2017)

    Article  CAS  Google Scholar 

  17. M.G. Pini, P. Politi, R.L. Stamps, Anisotropy effects on the magnetic excitations of a ferromagnetic monolayer below and above the Curie temperature. Phys. Rev. B 72, 014454 (2005)

    Article  CAS  Google Scholar 

  18. F.G. Coury et al., High throughput discovery and design of strong multicomponent metallic solid solutions. Sci. Rep. 8(1), 8600 (2018)

    Article  CAS  Google Scholar 

  19. T. Yang et al., L12-strengthened high-entropy alloys for advanced structural applications. J. Mater. Res. 33(19), 2983–2997 (2018)

    Article  CAS  Google Scholar 

  20. T. Yang et al., Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362(6417), 933–937 (2018)

    Article  CAS  Google Scholar 

  21. Z. Li, D. Raabe, Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM J. Miner. Met. Mater. Soc. 69(11), 2099–2106 (2017)

    Article  CAS  Google Scholar 

  22. Z. Li et al., Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 33(19), 3156–3169 (2018)

    Article  CAS  Google Scholar 

  23. D. Ma et al., Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 98, 288–296 (2015)

    Article  CAS  Google Scholar 

  24. Z. Li et al., Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 136, 262–270 (2017)

    Article  CAS  Google Scholar 

  25. Z. Li et al., Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017)

    Article  CAS  Google Scholar 

  26. Z. Li, Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Mater. 164, 400–412 (2019)

    Article  CAS  Google Scholar 

  27. Z. Wang, I. Baker, Interstitial strengthening of a f.c.c. FeNiMnAlCr high entropy alloy. Mater. Lett. 180, 153–156 (2016)

    Article  CAS  Google Scholar 

  28. A. Chiba et al., Interstitial carbon enhanced corrosion resistance of Fe-33Mn-xC austenitic steels: Inhibition of anodic dissolution. J. Electrochem. Soc. 165(2), C19–C26 (2018)

    Article  CAS  Google Scholar 

  29. M. Beyramali Kivy, C.S. Kriewall, M.A. Zaeem, Formation of chromium-iron carbide by carbon diffusion in AlXCoCrFeNiCu high-entropy alloys. Mater. Res. Lett. 6(6), 321–326 (2018)

    Article  CAS  Google Scholar 

  30. Y. Ikeda, B. Grabowski, F. Körmann, Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys. Mater. Charact. 147, 464–511 (2018)

    Article  CAS  Google Scholar 

  31. H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics, the Calphad Method (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  32. M.C. Gao et al., Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32(19), 3627–3641 (2017)

    Article  CAS  Google Scholar 

  33. S. Gorsse, F. Tancret, Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys. J. Mater. Res. 33(19), 2899–2923 (2018)

    Google Scholar 

  34. C. Zhang et al., Computational thermodynamics aided high-entropy alloy design. JOM 64(7), 839–845 (2012)

    Article  CAS  Google Scholar 

  35. M. Gao, D. Alman, Searching for next single-phase high-entropy alloy compositions. Entropy 15(10), 4504–4519 (2013)

    Article  CAS  Google Scholar 

  36. F. Zhang et al., An understanding of high entropy alloys from phase diagram calculations. Calphad 45, 1–10 (2014)

    Article  CAS  Google Scholar 

  37. O.N. Senkov et al., Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50, 32–48 (2015)

    Article  CAS  Google Scholar 

  38. A. Abu-Odeh et al., Efficient exploration of the high entropy alloy composition-phase space. Acta Mater. 152, 41–57 (2018)

    Article  CAS  Google Scholar 

  39. C. Zhang, M.C. Gao, CALPHAD modeling of high-entropy alloys, in High-Entropy Alloys, (Springer, Cham, 2016), pp. 399–444

    Chapter  Google Scholar 

  40. S.L. Chen et al., The PANDAT software package and its applications. Calphad 26(2), 175–188 (2002)

    Article  CAS  Google Scholar 

  41. J.O. Andersson et al., Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2), 273–312 (2002)

    Article  CAS  Google Scholar 

  42. C. Haase et al., Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design. Mater. Sci. Eng. A 688, 180–189 (2017)

    Article  CAS  Google Scholar 

  43. H. Mao, H.-L. Chen, Q. Chen, TCHEA1: A thermodynamic database not limited for “high entropy” alloys. J. Phase Equilib. Diffus. 38(4), 353–368 (2017)

    Article  CAS  Google Scholar 

  44. T. Klaver, D. Simonovic, M. Sluiter, Brute force composition scanning with a CALPHAD database to find low temperature body centered cubic high entropy alloys. Entropy 20(12), 911 (2018)

    Article  CAS  Google Scholar 

  45. H.-L. Chen, H. Mao, Q. Chen, Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips. Mater. Chem. Phys. 210, 279–290 (2018)

    Article  CAS  Google Scholar 

  46. F. Körmann, A.V. Ruban, M.H.F. Sluiter, Long-ranged interactions in bcc NbMoTaW high-entropy alloys. Mater. Res. Lett. 5(1), 35–40 (2017)

    Article  CAS  Google Scholar 

  47. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964)

    Article  Google Scholar 

  48. E. Engel, R.M. Dreizler, Density Functional Theory (Springer-Verlag, Berlin/Heidelberg, 2011)

    Book  Google Scholar 

  49. A. Zunger et al., Special quasirandom structures. Phys. Rev. Lett. 65(3), 353–356 (1990)

    Article  CAS  Google Scholar 

  50. B.L. Gyorffy, Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys. Rev. B 5(6), 2382–2384 (1972)

    Article  Google Scholar 

  51. L. Vitos, Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B 64(1), 014107 (2001)

    Article  CAS  Google Scholar 

  52. L. Vitos, I.A. Abrikosov, B. Johansson, Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 87(15), 156401 (2001)

    Article  CAS  Google Scholar 

  53. P.A. Korzhavyi et al., Madelung energy for random metallic alloys in the coherent potential approximation. Phys. Rev. B 51(9), 5773–5780 (1995)

    Article  CAS  Google Scholar 

  54. K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71–76 (2002)

    Article  Google Scholar 

  55. P. Giannozzi et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  56. X. Gonze et al., First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 25(3), 478–492 (2002)

    Article  Google Scholar 

  57. J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008)

    Article  CAS  Google Scholar 

  58. F. Yonezawa, K. Morigaki, Coherent potential approximation. Basic concepts and applications. Prog. Theor. Phys. Suppl. 53, 1–76 (1973)

    Article  CAS  Google Scholar 

  59. Y. Zhang et al., Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015)

    Article  CAS  Google Scholar 

  60. K. Jin et al., Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016)

    Article  CAS  Google Scholar 

  61. P. Singh, A.V. Smirnov, D.D. Johnson, Atomic short-range order and incipient long-range order in high-entropy alloys. Phys. Rev. B 91(22), 224204 (2015)

    Article  CAS  Google Scholar 

  62. B.L. Gyorffy et al., A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F 15(6), 1337–1386 (1985)

    Article  CAS  Google Scholar 

  63. V.P. Antropov et al., Spin dynamics in magnets: Equation of motion and finite temperature effects. Phys. Rev. B 54(2), 1019–1035 (1996)

    Article  CAS  Google Scholar 

  64. H. Ebert, D. Ködderitzsch, J. Minár, Calculating condensed matter properties using the KKR-Green’s function method—recent developments and applications. Rep. Prog. Phys. 74(9), 096501 (2011)

    Article  CAS  Google Scholar 

  65. L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (Springer Science & Business Media, London, 2007)

    Google Scholar 

  66. J.W.D. Connolly, A.R. Williams, Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27(8), 5169–5172 (1983)

    Article  CAS  Google Scholar 

  67. A. Van De Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: A user guide. Calphad 26(4), 539–553 (2002)

    Article  Google Scholar 

  68. D.D. Fontaine, Cluster approach to order-disorder transformations in alloys, in Solid State Physics, ed. by H. Ehrenreich, D. Turnbull, (Academic, New York, 1994), pp. 33–176

    Google Scholar 

  69. K. Terakura et al., Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au, and Ag-Au systems. Phys. Rev. B 35(5), 2169–2173 (1987)

    Article  CAS  Google Scholar 

  70. M. Sluiter, P. Turchi, Electronic theory of phase stability in substitutional alloys: The generalized perturbation method versus the Connolly-Williams method. Phys. Rev. B 40(16), 11215–11228 (1989)

    Article  CAS  Google Scholar 

  71. A.V. Ruban et al., Atomic and magnetic configurational energetics by the generalized perturbation method. Phys. Rev. B 70(12), 125115 (2004)

    Article  CAS  Google Scholar 

  72. P. Turchi et al., First-principles study of ordering properties of substitutional alloys using the generalized perturbation method. Phys. Rev. B 37(10), 5982 (1988)

    Article  CAS  Google Scholar 

  73. F. Ducastelle, Order and Phase Stability in Alloys (North – Holland, Amsterdam, 1991)

    Google Scholar 

  74. P.E.A. Turchi et al., First-principles study of phase stability in Cu-Zn substitutional alloys. Phys. Rev. Lett. 67(13), 1779–1782 (1991)

    Article  CAS  Google Scholar 

  75. B. Gyorffy, G. Stocks, Concentration waves and Fermi surfaces in random metallic alloys. Phys. Rev. Lett. 50(5), 374 (1983)

    Article  CAS  Google Scholar 

  76. D. Lerch et al., UNCLE: A code for constructing cluster expansions for arbitrary lattices with minimal user-input. Model. Simul. Mater. Sci. Eng. 17(5), 055003 (2009)

    Article  CAS  Google Scholar 

  77. M.C. Nguyen et al., Cluster-expansion model for complex quinary alloys: Application to alnico permanent magnets. Phys. Rev.Appl. 8(5), 054016 (2017)

    Article  Google Scholar 

  78. A. Fernandez-Caballero et al., Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-VW system. J. Phase Equilib. Diffus. 38(4), 391–403 (2017)

    Article  CAS  Google Scholar 

  79. J. Cowley, An approximate theory of order in alloys. Phys. Rev. 77(5), 669 (1950)

    Article  CAS  Google Scholar 

  80. P. Singh et al., Tuning phase-stability and short-range order through Al-doping in FeMnCoCrAlx (x<= 20 at.%) high entropy alloys. arXiv preprint arXiv, 1803.06771 (2018)

    Google Scholar 

  81. K. Gubaev et al., Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. arXiv preprint arXiv, 1806.10567 (2018)

    Google Scholar 

  82. A. Shapeev, Accurate representation of formation energies of crystalline alloys with many components. Comput. Mater. Sci. 139, 26–30 (2017)

    Article  CAS  Google Scholar 

  83. E.V. Podryabinkin, A.V. Shapeev, Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017)

    Article  CAS  Google Scholar 

  84. F.K. Tatiana Kostiuchenko, J. Neugebauer, A. Shapeev, Impact of local lattice relaxations on phase stability and chemical ordering in bcc NbMoTaW high-entropy alloys explored by ab initio based machine-learning potentials. npj Comput. Mater. 5(1), 1–7 (2018)

    Google Scholar 

  85. V. Moruzzi, J. Janak, K. Schwarz, Calculated thermal properties of metals. Phys. Rev. B 37(2), 790 (1988)

    Article  CAS  Google Scholar 

  86. D. Ma et al., Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015)

    Article  CAS  Google Scholar 

  87. Y. Wang et al., Computation of entropies and phase equilibria in refractory V-Nb-Mo-Ta-W high-entropy alloys. Acta Mater. 143, 88–101 (2018)

    Article  CAS  Google Scholar 

  88. F. Körmann et al., Phonon broadening in high entropy alloys. npj Comput. Mater. 3(1), 36 (2017)

    Article  CAS  Google Scholar 

  89. M.A. Blanco, E. Francisco, V. Luaña, GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158(1), 57–72 (2004)

    Article  CAS  Google Scholar 

  90. G. Kresse, J. Furthmüller, J. Hafner, Ab initio force constant approach to phonon dispersion relations of diamond and graphite. EPL (Europhys. Lett.) 32(9), 729 (1995)

    Article  CAS  Google Scholar 

  91. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)

    Article  CAS  Google Scholar 

  92. Y. Wang et al., First-principles calculations of lattice dynamics and thermal properties of polar solids. npj Comput. Mater. 2, 16006 (2016)

    Article  CAS  Google Scholar 

  93. B. Grabowski et al., Ab initio up to the melting point: Anharmonicity and vacancies in aluminum. Phys. Rev. B 79(13), 134106 (2009)

    Article  CAS  Google Scholar 

  94. A.I. Duff et al., Improved method of calculatingab initiohigh-temperature thermodynamic properties with application to ZrC. Phys. Rev. B 91(21), 214311 (2015)

    Article  CAS  Google Scholar 

  95. B.F.A.M. Widom, Elastic stability and lattice distortion of refractory high entropy alloys. Mater. Chem. Phys. 210, 309–314 (2017)

    Google Scholar 

  96. M. Widom, Entropy and diffuse scattering: Comparison of NbTiVZr and CrMoNbV. Metall. Mater. Trans. A 47(7), 3306–3311 (2016)

    Article  CAS  Google Scholar 

  97. M. Widom et al., Hybrid monte carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45(1), 196–200 (2013)

    Article  CAS  Google Scholar 

  98. P. Srinivasan et al., The effectiveness of reference-free modified embedded atom method potentials demonstrated for NiTi and NbMoTaW. Model. Simul. Mater. Sci. Eng. 27(6), 065013 (2019)

    Google Scholar 

  99. A.I. Liechtenstein et al., Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67(1), 65–74 (1987)

    Article  CAS  Google Scholar 

  100. F. Körmann et al., “Treasure maps” for magnetic high-entropy-alloys from theory and experiment. Appl. Phys. Lett. 107(14), 142404 (2015)

    Article  CAS  Google Scholar 

  101. S. Huang et al., Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 103, 71–74 (2016)

    Article  CAS  Google Scholar 

  102. F. Körmann, T. Hickel, J. Neugebauer, Influence of magnetic excitations on the phase stability of metals and steels. Curr. Opinion Solid State Mater. Sci. 20(2), 77–84 (2016)

    Article  CAS  Google Scholar 

  103. I.A. Abrikosov et al., Recent progress in simulations of the paramagnetic state of magnetic materials. Curr. Opinion Solid State Mater. Sci. 20(2), 85–106 (2016)

    Article  CAS  Google Scholar 

  104. F. Körmann et al., Lambda transitions in materials science: Recent advances in CALPHAD and first-principles modelling. Phys. Status Solidi B 251(1), 53–80 (2014)

    Article  CAS  Google Scholar 

  105. M. de Jong et al., Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 150009 (2015)

    Article  CAS  Google Scholar 

  106. H. Springer, D. Raabe, Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater. 60(12), 4950–4959 (2012)

    Article  CAS  Google Scholar 

  107. D. Raabe et al., From high-entropy alloys to high-entropy steels. Steel Res. Int. 86(10), 1127–1138 (2015)

    Article  CAS  Google Scholar 

  108. H. Springer, M. Belde, D. Raabe, Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability. Mater. Des. 90, 1100–1109 (2016)

    Article  CAS  Google Scholar 

  109. Z. Li, D. Raabe, Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Mater. Chem. Phys. 210(1), 29–36 (2018)

    Article  CAS  Google Scholar 

  110. J.-C. Zhao, X. Zheng, D.G. Cahill, High-throughput diffusion multiples. Mater. Today 8(10), 28–37 (2005)

    Article  CAS  Google Scholar 

  111. J.-C. Zhao, Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog. Mater. Sci. 51(5), 557–631 (2006)

    Article  Google Scholar 

  112. J.-C. Zhao et al., A diffusion multiple approach for the accelerated design of structural materials. MRS Bull. 27(4), 324–329 (2002)

    Article  CAS  Google Scholar 

  113. J.-C. Zhao, Reliability of the diffusion-multiple approach for phase diagram mapping. J. Mater. Sci. 39(12), 3913–3925 (2004)

    Article  CAS  Google Scholar 

  114. J.-C. Zhao, A combinatorial approach for structural materials. Adv. Eng. Mater. 3(3), 143–147 (2001)

    Article  CAS  Google Scholar 

  115. P. Wilson, R. Field, M. Kaufman, The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co-Cr-Fe-Mn-Ni high entropy alloy system. Intermetallics 75, 15–24 (2016)

    Article  CAS  Google Scholar 

  116. D. Misell, C. Stolinski, Scanning Electron Microscopy and X-ray Microanalysis. A Text for Biologists, Material Scientists and Geologists (Pergamon, New York, 1983)

    Book  Google Scholar 

  117. A.J. Schwartz et al., Electron Backscatter Diffraction in Materials Science (Springer, Boston, 2000)

    Book  Google Scholar 

  118. D. Dingley, Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J. Microsc. 213(3), 214–224 (2004)

    Article  CAS  Google Scholar 

  119. D.B. Williams, C.B. Carter, The transmission electron microscope, in Transmission Electron Microscopy, (Springer, Boston, 1996), pp. 3–17

    Chapter  Google Scholar 

  120. B. Fultz, J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  121. A.C. Fischer-Cripps, Nanoindentation (Springer, New York, 2011)

    Book  Google Scholar 

  122. M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601–609 (1986)

    Article  Google Scholar 

  123. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  CAS  Google Scholar 

  124. J.J. Vlassak, W.D. Nix, A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7(12), 3242–3249 (1992)

    Article  CAS  Google Scholar 

  125. S.A.S. Asif et al., Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90(3), 1192–1200 (2001)

    Article  CAS  Google Scholar 

  126. S. Huxtable et al., Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3(5), 298 (2004)

    Article  CAS  Google Scholar 

  127. V. Ocelík et al., Additive manufacturing of high-entropy alloys by laser processing. JOM 68(7), 1810–1818 (2016)

    Article  CAS  Google Scholar 

  128. J. Joseph et al., Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 633, 184–193 (2015)

    Article  CAS  Google Scholar 

  129. Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96 (2015)

    Article  CAS  Google Scholar 

  130. D.C. Hofmann et al., Compositionally graded metals: A new frontier of additive manufacturing. J. Mater. Res. 29(17), 1899–1910 (2014)

    Article  CAS  Google Scholar 

  131. M. Rombouts et al., Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann. Manuf. Technol. 55(1), 187–192 (2006)

    Article  Google Scholar 

  132. H. Knoll et al., Combinatorial alloy design by laser additive manufacturing. Steel Res. Int. 88(8), 1600416 (2017)

    Article  CAS  Google Scholar 

  133. T. Borkar et al., A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63–76 (2016)

    Article  CAS  Google Scholar 

  134. B.A. Welk, M.A. Gibson, H.L. Fraser, A combinatorial approach to the investigation of metal systems that form both bulk metallic glasses and high entropy alloys. JOM 68(3), 1021–1026 (2016)

    Article  CAS  Google Scholar 

  135. J. Cui et al., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286 (2006)

    Article  CAS  Google Scholar 

  136. H. Stein et al., A structure zone diagram obtained by simultaneous deposition on a novel step heater: A case study for Cu2O thin films. Phys. Status Solidi A 212(12), 2798–2804 (2015)

    Article  CAS  Google Scholar 

  137. A. Ludwig et al., Development of multifunctional thin films using high-throughput experimentation methods. Int. J. Mater. Res. 99(10), 1144–1149 (2008)

    Article  CAS  Google Scholar 

  138. Y. Li et al., Combinatorial strategies for synthesis and characterization of alloy microstructures over large compositional ranges. ACS Comb. Sci. 18(10), 630–637 (2016)

    Article  CAS  Google Scholar 

  139. V. Chevrier, J. Dahn, Production and visualization of quaternary combinatorial thin films. Meas. Sci. Technol. 17(6), 1399 (2006)

    Article  CAS  Google Scholar 

  140. A. Kauffmann et al., Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni. Surf. Coat. Technol. 325, 174–180 (2017)

    Article  CAS  Google Scholar 

  141. C. Brundle, G. Conti, P. Mack, XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films. J. Electron Spectrosc. Relat. Phenom. 178, 433–448 (2010)

    Article  CAS  Google Scholar 

  142. H.S. Stein et al., New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system. J. Mater. Chem. A 4(8), 3148–3152 (2016)

    Article  CAS  Google Scholar 

  143. O.L. Warren, T.J. Wyrobek, Nanomechanical property screening of combinatorial thin-film libraries by nanoindentation. Meas. Sci. Technol. 16(1), 100 (2004)

    Article  Google Scholar 

  144. S.W. Fackler et al., Combinatorial study of Fe-Co-V hard magnetic thin films. Sci. Technol. Adv. Mater. 18(1), 231–238 (2017)

    Article  CAS  Google Scholar 

  145. S. Thienhaus et al., Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: A case study for the system Ni–Al. ACS Comb. Sci. 16(12), 686–694 (2014)

    Article  CAS  Google Scholar 

  146. Y. Lederer et al., The search for high entropy alloys: A high-throughput ab-initio approach. arXiv preprint arXiv, 1711.03426 (2017)

    Google Scholar 

  147. N. Gurao, K. Biswas, In the quest of single phase multi-component multiprincipal high entropy alloys. J. Alloys Compd. 697, 434–442 (2017)

    Article  CAS  Google Scholar 

  148. H. Luo et al., Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel. Electrochem. Commun. 79, 28–32 (2017)

    Article  CAS  Google Scholar 

  149. H. Luo, Z. Li, D. Raabe, Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7(1), 9892 (2017)

    Article  Google Scholar 

  150. M.C. Gao et al., Design of refractory high-entropy alloys. JOM 67(11), 2653–2669 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (MHFS) wishes to acknowledge helpful discussions with Prof. V. Soare of INMR (Romania), Prof. B. Podgornik of IMT (Slovenia), and dr. T.P.C. Klaver of TU Delft (Netherlands). This research received funding through the ERA-NET integrated computational materials engineering (ICME) program under project 4316 “HEAMODELL” as financed by NWO “domein Exacte en Natuurwetenschappen”, project number 732.017.107. Fundings from the Deutsche Forschungsgemeinschaft (SPP 2006) and from NWO/STW (VIDI grant 15707) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel H. F. Sluiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körmann, F., Li, Z., Raabe, D., Sluiter, M.H.F. (2021). Iron-rich High Entropy Alloys. In: Rana, R. (eds) High-Performance Ferrous Alloys. Springer, Cham. https://doi.org/10.1007/978-3-030-53825-5_9

Download citation

Publish with us

Policies and ethics