Skip to main content

Fibrinolysis Dysregulation Following Trauma

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Derangement of fibrinolysis has been an interest of surgical scientists for over 200 years. Appreciation of the spectrum of fibrinolysis following severe injury confirms the long-perceived notion that pathology occurs at the extremes of any protease system. Trauma can provoke overactivation of fibrinolysis resulting in uncontrolled bleeding or inhibition resulting in fibrinolysis shutdown resulting in organ dysfunction. While the CRASH II trial demonstrated a modest benefit in survival using antifibrinolytic medication in trauma patients, there are likely superior resuscitation strategies to improve survival in patients with abnormal fibrinolytic activity. This chapter is intended to refresh the reader’s historic appreciation of trauma-induced fibrinolysis and emphasize the physiologic role of the fibrinolytic system in response to injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hewson WH. Properties of blood: Chapter IV. An experimental inquiry into the properties of blood. London: C and J Adlard Printers; 1772.

    Google Scholar 

  2. Macfarlane RG, Biggs R. Fibrinolysis; its mechanism and significance. Blood. 1948;3(10):1167–87.

    Article  CAS  PubMed  Google Scholar 

  3. Cannon WBGH. Factors affecting the coagulation time of blood. Am J Phys. 1914;34:232–42.

    Article  CAS  Google Scholar 

  4. Crowell JW, Read WL. In vivo coagulation; a probable cause of irreversible shock. Am J Phys. 1955;183(3):565–9.

    Article  CAS  Google Scholar 

  5. Turpini R, Stefanini M. The nature and mechanism of the hemostatic breakdown in the course of experimental hemorrhagic shock. J Clin Investig. 1959;38(1, Part 1):53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardaway RM, Brune WH, Geever EF, Burns JW, Mock HP. Studies on the role of intravascular coagulation in irreversible hemorrhagic shock. Ann Surg. 1962;155:241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hardaway RM, Burns JW. Mechanism of action of fibrinolysin in the prevention of irreversible hemorrhagic shock. Ann Surg. 1963;157:305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whitaker AN, McKay DG. Studies of catecholamine shock. I. Disseminated intravascular coagulation. Am J Pathol. 1969;56(2):153–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hardaway RM 3rd, Mc KD. Disseminated intravascular coagulation: a cause of shock. Ann Surg. 1959;149(4):462–70.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hardaway RM. Disseminated intravascular coagulation with special reference to shock and its treatment. Mil Med. 1965;130:451–60.

    Article  CAS  PubMed  Google Scholar 

  11. Wada H, Tanigawa M, Takagi M, Suzuki H, Mori Y, Ohta T, et al. Hemostatic changes before and after the onset of disseminated intravascular coagulation. Rinsho Ketsueki. 1989;30(10):1755–62.

    CAS  PubMed  Google Scholar 

  12. Whaun JM, Oski FA, Urmson J. Experience with disseminated intravascular coagulation in a children's hospital. Can Med Assoc J. 1972;107(10):963–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Mondhiry H. Disseminated intravascular coagulation: experience in a major cancer center. Thromb Diath Haemorrh. 1975;34(1):181–93.

    CAS  PubMed  Google Scholar 

  14. Rytel MW, Dee TH, Ferstenfeld JE, Hensley GT. Possible pathogenetic role of capsular antigens in fulminant pneumococcal disease with disseminated intravascular coagulation (DIC). Am J Med. 1974;57(6):889–96.

    Article  CAS  PubMed  Google Scholar 

  15. McKay DG. Clinical significance of intravascular coagulation. Bibl Haematol. 1983;49:63–78.

    CAS  Google Scholar 

  16. Starzl TE, Marchioro TL, Vonkaulla KN, Hermann G, Brittain RS, Waddell WR. Homotransplantation of the liver in humans. Surg Gynecol Obstet. 1963;117:659–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hardaway RM. Microcoagulation in shock. Am J Surg. 1965;110:298–301.

    Article  CAS  PubMed  Google Scholar 

  18. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7; discussion 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cardenas JC, Wade CE, Cotton BA, George MJ, Holcomb JB, Schreiber MA, et al. TEG lysis shutdown represents coagulopathy in bleeding trauma patients: analysis of the PROPPR cohort. Shock. 2019;51(3):273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gall LS, Vulliamy P, Gillespie S, Jones TF, Pierre RSJ, Breukers SE, et al. The S100A10 pathway mediates an occult hyperfibrinolytic subtype in trauma patients. Ann Surg. 2019;269(6):1184–91.

    Article  PubMed  Google Scholar 

  22. Stettler GR, Moore EE, Moore HB, Nunns GR, Silliman CC, Banerjee A, et al. Redefining post injury fibrinolysis phenotypes using two viscoelastic assays. J Trauma Acute Care Surg. 2019;86(4):679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leeper CM, Neal MD, McKenna C, Sperry JL, Gaines BA. Abnormalities in fibrinolysis at the time of admission are associated with deep vein thrombosis, mortality, and disability in a pediatric trauma population. J Trauma Acute Care Surg. 2017;82(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  24. Leeper CM, Neal MD, McKenna CJ, Gaines BA. Trending fibrinolytic dysregulation: fibrinolysis shutdown in the days after injury is associated with poor outcome in severely injured children. Ann Surg. 2017;266(3):508–15.

    Article  PubMed  Google Scholar 

  25. Gomez-Builes JC, Acuna SA, Nascimento B, Madotto F, Rizoli SB. Harmful or physiologic: diagnosing fibrinolysis shutdown in a trauma cohort with rotational thromboelastometry. Anesth Analg. 2018;127(4):840–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Levin EG, del Zoppo GJ. Localization of tissue plasminogen activator in the endothelium of a limited number of vessels. Am J Pathol. 1994;144(5):855–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruhl H, Berens C, Winterhagen A, Muller J, Oldenburg J, Potzsch B. Label-free kinetic studies of hemostasis-related biomarkers including D-dimer using autologous serum transfusion. PLoS One. 2015;10(12):e0145012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chakrabarti R, Fearnley GR. The ‘fibrinolytic potential’ as a simple measure of spontaneous fibrinolysis. J Clin Pathol. 1962;15:228–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katz J, Lurie A, Becker D, Metz J. The euglobulin lysis time test: an ineffectual monitor of the therapeutic inhibition of fibrinolysis. J Clin Pathol. 1970;23(6):529–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brass LF, Zhu L, Stalker TJ. Minding the gaps to promote thrombus growth and stability. J Clin Invest. 2005;115(12):3385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brass LF, Stalker TJ. Minding the gaps – and the junctions, too. Circulation. 2012;125(20):2414–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moore HB, Moore EE, Gonzalez E, Hansen KC, Dzieciatkowska M, Chapman MP, et al. Hemolysis exacerbates hyperfibrinolysis while platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock. 2015;43(1):39–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chapman MP, Moore EE, Ramos CR, Ghasabyan A, Harr JN, Chin TL, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, Schochl H, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73(2):365–70; discussion 70.

    Article  CAS  PubMed  Google Scholar 

  35. Schochl H, Frietsch T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31.

    PubMed  Google Scholar 

  36. Chakrabarti R, Hocking ED, Fearnley GR. Reaction pattern to three stresses--electroplexy, surgery, and myocardial infarction – of fibrinolysis and plasma fibrinogen. J Clin Pathol. 1969;22(6):659–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raza I, Davenport R, Rourke C, Platton S, Manson J, Spoors C, et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11(2):307–14.

    Article  CAS  PubMed  Google Scholar 

  38. Moore HB, Moore EE, Chapman MP, Hansen KC, Cohen MJ, Pieracci FM, et al. Does tranexamic acid improve clot strength in severely injured patients who have elevated fibrin degradation products and low fibrinolytic activity, measured by thrombelastography? J Am Coll Surg. 2019;229(1):92–101.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Innes D, Sevitt S. Coagulation and fibrinolysis in injured patients. J Clin Pathol. 1964;17:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211–7; discussion 7.

    PubMed  Google Scholar 

  41. Kutcher ME, Ferguson AR, Cohen MJ. A principal component analysis of coagulation after trauma. J Trauma Acute Care Surg. 2013;74(5):1223–9; discussion 9–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chin TL, Moore EE, Moore HB, Gonzalez E, Chapman MP, Stringham JR, et al. A principal component analysis of postinjury viscoelastic assays: clotting factor depletion versus fibrinolysis. Surgery. 2014;156(3):570–7.

    Article  PubMed  Google Scholar 

  43. White NJ, Contaifer D Jr, Martin EJ, Newton JC, Mohammed BM, Bostic JL, et al. Early hemostatic responses to trauma identified with hierarchical clustering analysis. J Thromb Haemost. 2015;13(6):978–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schochl H, Cadamuro J, Seidl S, Franz A, Solomon C, Schlimp CJ, et al. Hyperfibrinolysis is common in out-of-hospital cardiac arrest: results from a prospective observational thromboelastometry study. Resuscitation. 2013;84(4):454–9.

    Article  CAS  PubMed  Google Scholar 

  45. Hayakawa M, Gando S, Ieko M, Honma Y, Homma T, Yanagida Y, et al. Massive amounts of tissue factor induce fibrinogenolysis without tissue hypoperfusion in rats. Shock. 2013;39(6):514–9.

    Article  CAS  PubMed  Google Scholar 

  46. Stein SC, Chen XH, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg. 2002;97(6):1373–7.

    Article  PubMed  Google Scholar 

  47. Maeda T, Katayama Y, Kawamata T, Aoyama N, Mori T. Hemodynamic depression and microthrombosis in the peripheral areas of cortical contusion in the rat: role of platelet activating factor. Acta Neurochir Suppl. 1997;70:102–5.

    CAS  PubMed  Google Scholar 

  48. Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, Barnett C, et al. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252(3):434–42; discussion 43–4.

    Article  PubMed  Google Scholar 

  49. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. CRASH-2 Trial Collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Article  CAS  Google Scholar 

  51. Sherry S, Fletcher AP, Alkjaersig N. Fibrinolysis and fibrinolytic activity in man. Physiol Rev. 1959;39(2):343–82.

    Article  CAS  PubMed  Google Scholar 

  52. Wiener G, Moore HB, Moore EE, Gonzalez E, Diamond S, Zhu S, et al. Shock releases bile acid inducing platelet inhibition and fibrinolysis. J Surg Res. 2015;195(2):390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Groth CG, Pechet L, Starzl TE. Coagulation during and after orthotopic transplantation of the human liver. Arch Surg. 1969;98(1):31–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Otter M, Kuiper J, van Berkel TJ, Rijken DC. Mechanisms of tissue-type plasminogen activator (tPA) clearance by the liver. Ann N Y Acad Sci. 1992;667:431–42.

    Article  CAS  PubMed  Google Scholar 

  55. Einarsson M, Smedsrod B, Pertoft H. Uptake and degradation of tissue plasminogen activator in rat liver. Thromb Haemost. 1988;59(3):474–9.

    Article  CAS  PubMed  Google Scholar 

  56. Cardenas JC, Matijevic N, Baer LA, Holcomb JB, Cotton BA, Wade CE. Elevated tissue plasminogen activator and reduced plasminogen activator inhibitor promote hyperfibrinolysis in trauma patients. Shock. 2014;41(6):514–21.

    Article  CAS  PubMed  Google Scholar 

  57. Garcia-Avello A, Lorente JA, Cesar-Perez J, Garcia-Frade LJ, Alvarado R, Arevalo JM, et al. Degree of hypercoagulability and hyperfibrinolysis is related to organ failure and prognosis after burn trauma. Thromb Res. 1998;89(2):59–64.

    Article  CAS  PubMed  Google Scholar 

  58. Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13(6):680–5.

    Article  PubMed  Google Scholar 

  59. Chapman MP, Moore EE, Moore HB, Gonzalez E, Gamboni F, Chandler JG, et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg. 2016;80(1):16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuramoto M, Yamashita J, Ogawa M. Tissue-type plasminogen activator predicts endocrine responsiveness of human pancreatic carcinoma cells. Cancer. 1995;75(6):1263–72.

    Article  CAS  PubMed  Google Scholar 

  61. Kostousov V, Wang YW, Cotton BA, Wade CE, Holcomb JB, Matijevic N. Influence of resuscitation fluids, fresh frozen plasma and antifibrinolytics on fibrinolysis in a thrombelastography-based, in-vitro, whole-blood model. Blood Coagul Fibrinolysis. 2013;24(5):489–97.

    Article  CAS  PubMed  Google Scholar 

  62. Walker CB, Moore EE, Kam A, Dexter-Meldrum J, Nydam TL, Chapman MP, et al. Clot activators do not expedite the time to predict massive transfusion in trauma patients analyzed with tissue plasminogen activator thrombelastography. Surgery. 2019;166(3):408–15.

    Article  PubMed  Google Scholar 

  63. Declerck PJ, Lijnen HR, Verstreken M, Collen D. Role of alpha 2-antiplasmin in fibrin-specific clot lysis with single-chain urokinase-type plasminogen activator in human plasma. Thromb Haemost. 1991;65(4):394–8.

    Article  CAS  PubMed  Google Scholar 

  64. Callcut RA, Kornblith LZ, Conroy AS, Robles AJ, Meizoso JP, Namias N, et al. The why and how our trauma patients die: a prospective multicenter Western Trauma Association study. J Trauma Acute Care Surg. 2019;86(5):864–70.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kassam G, Choi KS, Ghuman J, Kang HM, Fitzpatrick SL, Zackson T, et al. The role of annexin II tetramer in the activation of plasminogen. J Biol Chem. 1998;273(8):4790–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kassam G, Le BH, Choi KS, Kang HM, Fitzpatrick SL, Louie P, et al. The p11 subunit of the annexin II tetramer plays a key role in the stimulation of t-PA-dependent plasminogen activation. Biochemistry. 1998;37(48):16958–66.

    Article  CAS  PubMed  Google Scholar 

  67. Mansfield AO. Alteration in fibrinolysis associated with surgery and venous thrombosis. Br J Surg. 1972;59(10):754–7.

    Article  CAS  PubMed  Google Scholar 

  68. Gallus AS, Hirsh J, Gent M. Relevance of preoperative and postoperative blood tests to postoperative leg-vein thrombosis. Lancet. 1973;2(7833):805–9.

    Article  CAS  PubMed  Google Scholar 

  69. Macintyre IM, Webber RG, Crispin JR, Jones DR, Wood JK, Allan NC, et al. Plasma fibrinolysis and postoperative deep vein thrombosis. Br J Surg. 1976;63(9):694–7.

    Article  CAS  PubMed  Google Scholar 

  70. Griffiths NJ. Factors affecting the fibrinolytic response to surgery. Ann R Coll Surg Engl. 1979;61(1):12–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Knight MT, Dawson R, Melrose DG. Fibrinolytic response to surgery. Labile and stable patterns and their relevance to post-operative deep venous thrombosis. Lancet. 1977;2(8034):370–3.

    Article  CAS  PubMed  Google Scholar 

  72. Bruhn HD, Jipp P, Okoye S, Oltmann A. Hypofibrinolysis in acute myocardial infarction (author's transl). Med Klin. 1974;69(47):1951–5.

    CAS  PubMed  Google Scholar 

  73. Stegnar M, Peternel P, Keber D, Vene N. Poor fibrinolytic response to venous occlusion by different criteria in patients with deep vein thrombosis. Thromb Res. 1991;64(4):445–53.

    Article  CAS  PubMed  Google Scholar 

  74. Booth NA, Walker E, Maughan R, Bennett B. Plasminogen activator in normal subjects after exercise and venous occlusion: t-PA circulates as complexes with C1-inhibitor and PAI-1. Blood. 1987;69(6):1600–4.

    Article  CAS  PubMed  Google Scholar 

  75. Petaja J, Rasi V, Myllyla G, Vahtera E, Hallman H. Familial hypofibrinolysis and venous thrombosis. Br J Haematol. 1989;71(3):393–8.

    Article  CAS  PubMed  Google Scholar 

  76. Nguyen G, Horellou MH, Kruithof EK, Conard J, Samama MM. Residual plasminogen activator inhibitor activity after venous stasis as a criterion for hypofibrinolysis: a study in 83 patients with confirmed deep vein thrombosis. Blood. 1988;72(2):601–5.

    Article  CAS  PubMed  Google Scholar 

  77. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):817.

    Article  CAS  Google Scholar 

  78. Iba T, Levy JH, Thachil J, Wada H, Levi M, Scientific, et al. The progression from coagulopathy to disseminated intravascular coagulation in representative underlying diseases. Thromb Res. 2019;179:11–14.

    Google Scholar 

  79. Geerts WH, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994;331(24):1601–6.

    Article  CAS  PubMed  Google Scholar 

  80. Schultz DJ, Brasel KJ, Washington L, Goodman LR, Quickel RR, Lipchik RJ, et al. Incidence of asymptomatic pulmonary embolism in moderately to severely injured trauma patients. J Trauma. 2004;56(4):727–31; discussion 31–3.

    Article  PubMed  Google Scholar 

  81. Kwaan HC. Microvascular thrombosis: a serious and deadly pathologic process in multiple diseases. Semin Thromb Hemost. 2011;37(8):961–78.

    Article  PubMed  Google Scholar 

  82. Gando S. Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med. 2010;38(2 Suppl):S35–42.

    Article  PubMed  Google Scholar 

  83. Prakash S, Verghese S, Roxby D, Dixon D, Bihari S, Bersten A. Changes in fibrinolysis and severity of organ failure in sepsis: a prospective observational study using point-of-care test-ROTEM. J Crit Care. 2015;30(2):264–70.

    Article  CAS  PubMed  Google Scholar 

  84. Schochl H, Solomon C, Schulz A, Voelckel W, Hanke A, Van Griensven M, et al. Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med. 2011;17(3–4):266–72.

    Article  PubMed  CAS  Google Scholar 

  85. Ostrowski SR, Berg RM, Windelov NA, Meyer MA, Plovsing RR, Moller K, et al. Discrepant fibrinolytic response in plasma and whole blood during experimental endotoxemia in healthy volunteers. PLoS One. 2013;8(3):e59368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rancourt RC, Ahmad A, Veress LA, Rioux JS, Garlick RB, White CW. Antifibrinolytic mechanisms in acute airway injury after sulfur mustard analog inhalation. Am J Respir Cell Mol Biol. 2014;51(4):559–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Enderson BL, Chen JP, Robinson R, Maull KI. Fibrinolysis in multisystem trauma patients. J Trauma. 1991;31(9):1240–6.

    Article  CAS  PubMed  Google Scholar 

  88. Leeper CM, Neal MD, McKenna C, Sperry J, Gaines BA. Abnormalities in fibrinolysis at the time of admission are associated with DVT, mortality and disability in a pediatric trauma population. J Trauma Acute Care Surg. 2017;82:27–34.

    Google Scholar 

  89. Meizoso JP, Karcutskie CA, Ray JJ, Namias N, Schulman CI, Proctor KG. Persistent fibrinolysis shutdown is associated with increased mortality in severely injured trauma patients. J Am Coll Surg. 2017;224(4):575–82.

    Article  PubMed  Google Scholar 

  90. Moore HB, Moore EE, Chapman MP, Hansen KC, Cohen MJ, Pieracci FM, et al. Does tranexamic acid improve clot strength in severely injured patients who have elevated fibrin degradation products and low fibrinolytic activity, measured by Thrombelastography? J Am Coll Surg. 2019;229(1):2–101.

    Article  Google Scholar 

  91. Moore HB, Moore EE, Neal MD, Sheppard FR, Kornblith LZ, Draxler DF, et al. Fibrinolysis shutdown in trauma: historical review and clinical implications. Anesth Analg. 2019;129(3):762–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nielsen VG. Colloids decrease clot propagation and strength: role of factor XIII-fibrin polymer and thrombin-fibrinogen interactions. Acta Anaesthesiol Scand. 2005;49(8):1163–71.

    Article  CAS  PubMed  Google Scholar 

  93. Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–9.

    Article  CAS  PubMed  Google Scholar 

  94. Brown JB, Cohen MJ, Minei JP, Maier RV, West MA, Billiar TR, et al. Goal-directed resuscitation in the prehospital setting: a propensity-adjusted analysis. J Trauma Acute Care Surg. 2013;74(5):1207–12; discussion 12–4.

    PubMed  PubMed Central  Google Scholar 

  95. Moore HB, Moore EE, Chapman MP, McVaney K, Bryskiewicz G, Blechar R, et al. Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial. Lancet. 2018;392(10144):283–91.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Napolitano LM, Cohen MJ, Cotton BA, Schreiber MA, Moore EE. Tranexamic acid in trauma: how should we use it? J Trauma Acute Care Surg. 2013;74(6):1575–86.

    Article  PubMed  Google Scholar 

  97. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  98. Johnston LR, Rodriguez CJ, Elster EA, Bradley MJ. Evaluation of military use of tranexamic acid and associated thromboembolic events. JAMA Surg. 2018;153(2):169–75.

    Article  PubMed  Google Scholar 

  99. Valle EJ, Allen CJ, Van Haren RM, Jouria JM, Li H, Livingstone AS, et al. Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg. 2014;76(6):1373–8.

    Article  CAS  PubMed  Google Scholar 

  100. Harvin JA, Peirce CA, Mims MM, Hudson JA, Podbielski JM, Wade CE, et al. The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg. 2015;78(5):905–9; discussion 9–11.

    Article  PubMed  Google Scholar 

  101. Moore HB, Moore EE, Huebner BR, Stettler GR, Nunns GR, Einersen PM, et al. Tranexamic acid is associated with increased mortality in patients with physiological fibrinolysis. J Surg Res. 2017;220:438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Einersen PM, Moore EE, Chapman MP, Moore HB, Gonzalez E, Silliman CC, et al. Rapid thrombelastography thresholds for goal-directed resuscitation of patients at risk for massive transfusion. J Trauma Acute Care Surg. 2017;82(1):114–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Holcomb JB, Zarzabal LA, Michalek JE, Kozar RA, Spinella PC, Perkins JG, et al. Increased platelet:RBC ratios are associated with improved survival after massive transfusion. J Trauma. 2011;71(2 Suppl 3):S318–28.

    PubMed  Google Scholar 

  104. Morrison JJ, Ross JD, Dubose JJ, Jansen JO, Midwinter MJ, Rasmussen TE. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II study. JAMA Surg. 2013;148(3):218–25.

    Article  CAS  PubMed  Google Scholar 

  105. He S, Johnsson H, Zabczyk M, Hultenby K, Wallen H, Blomback M. Fibrinogen depletion after plasma-dilution: impairment of proteolytic resistance and reversal via clotting factor concentrates. Thromb Haemost. 2014;111(3):417–28.

    Article  CAS  PubMed  Google Scholar 

  106. Hoppe B. Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation. Thromb Haemost. 2014;112(4):649–58.

    PubMed  Google Scholar 

  107. Ramanathan A, Karuri N. Fibronectin alters the rate of formation and structure of the fibrin matrix. Biochem Biophys Res Commun. 2014;443(2):395–9.

    Article  CAS  PubMed  Google Scholar 

  108. Meizoso JP, Dudaryk R, Mulder MB, Ray JJ, Karcutskie CA, Eidelson SA, et al. Increased risk of fibrinolysis shutdown among severely injured trauma patients receiving tranexamic acid. J Trauma Acute Care Surg. 2018;84(3):426–32.

    Article  PubMed  Google Scholar 

  109. Moore HB, Moore EE, Huebner BR, Dzieciatkowska M, Stettler GR, Nunns GR, et al. Fibrinolysis shutdown is associated with a fivefold increase in mortality in trauma patients lacking hypersensitivity to tissue plasminogen activator. J Trauma Acute Care Surg. 2017;83(6):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Moore HB, Moore EE, Lawson PJ, Gonzalez E, Fragoso M, Morton AP, et al. Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock. Surgery. 2015;158(2):386–92.

    Article  PubMed  Google Scholar 

  111. Prat NJ, Montgomery R, Cap AP, Dubick MA, Sarron JC, Destombe C, et al. Comprehensive evaluation of coagulation in swine subjected to isolated primary blast injury. Shock. 2015;43(6):598–603.

    Article  PubMed  Google Scholar 

  112. Macko AR, Moore HB, Cap AP, Meledeo MA, Moore EE, Sheppard FR. Tissue injury suppresses fibrinolysis after hemorrhagic shock in nonhuman primates (rhesus macaque). J Trauma Acute Care Surg. 2017;82(4):750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fleury V, Loyau S, Lijnen HR, Nieuwenhuizen W, Angles-Cano E. Molecular assembly of plasminogen and tissue-type plasminogen activator on an evolving fibrin surface. Eur J Biochem. 1993;216(2):549–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest E. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moore, H.B., Moore, E.E. (2021). Fibrinolysis Dysregulation Following Trauma. In: Moore, H.B., Neal, M.D., Moore, E.E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-030-53606-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53606-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53605-3

  • Online ISBN: 978-3-030-53606-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics