Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 199 Accesses

Abstract

This chapter demonstrates multi-phase droplets as compound micro-lenses with dynamically tunable focal lengths. The dynamic nature of these hydrocarbon-fluorocarbon droplets results in responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and optical modeling, including ray tracing and finite difference time domain simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.-H. Brenner, J. Jahns, Microoptics: From Technology to Applications (Springer, Berlin, 2013)

    Google Scholar 

  2. H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  3. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, B. Javidi, Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools. J. Disp. Technol. 1(2), 321–327 (2005)

    Article  ADS  Google Scholar 

  4. X. Xiao, B. Javidi, M. Martinez-Corral, A. Stern, Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]. Appl. Opt. 52(4), 546–560 (2013)

    Article  ADS  Google Scholar 

  5. L. Erdmann, K.J. Gabriel, High-resolution digital integral photography by use of a scanning microlens array. Appl. Opt. 40(31), 5592–5599 (2001)

    Article  ADS  Google Scholar 

  6. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, P. Hanrahan, Light field photography with a hand-held plenoptic camera. Technical Report CTSR 2005-02, Stanford, 2005

    Google Scholar 

  7. N.A. Davies, M. McCormick, M. Brewin, Design and analysis of an image transfer system using microlens arrays. Opt. Eng. 33(11), 3624–3633 (1994)

    Article  ADS  Google Scholar 

  8. A. Braslau, M. Deutsch, P.S. Pershan, A.H. Weiss, J. Als-Nielsen, J. Bohr, Surface roughness of water measured by X-ray reflectivity. Phys. Rev. Lett. 54(2), 114–117 (1985)

    Article  ADS  Google Scholar 

  9. L.D. Zarzar, V. Sresht, E.M. Sletten, J.A. Kalow, D. Blankschtein, T.M. Swager, Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518(7540), 520–524 (2015)

    Article  ADS  Google Scholar 

  10. S. Nagelberg, L.D. Zarzar, N. Nicolas, K. Subramanian, J.A. Kalow, V. Sresht, D. Blankschtein, G. Barbastathis, M. Kreysing, T.M. Swager, M. Kolle, Reconfigurable and responsive droplet-based compound micro-lenses. Nat. Commun. 8, ncomms14673 (2017)

    Google Scholar 

  11. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010)

    Article  ADS  Google Scholar 

  12. X. Zeng, C.T. Smith, J.C. Gould, C.P. Heise, H. Jiang, Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light. J. Microelectromech. Syst. 20(3), 583–593 (2011)

    Article  Google Scholar 

  13. J.H. Karp, E.J. Tremblay, J.E. Ford, Planar micro-optic solar concentrator. Opt. Express 18(2), 1122–1133 (2010)

    Article  ADS  Google Scholar 

  14. L.J. Hornbeck, Digital light processing for high-brightness high-resolution applications (1997). https://doi.org/10.1117/12.273880

  15. I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2), 356–368 (2009)

    Article  Google Scholar 

  16. M. Kreysing, L. Boyde, J. Guck, K.J. Chalut, Physical insight into light scattering by photoreceptor cell nuclei. Opt. Lett. 35(15), 2639–2641 (2010)

    Article  ADS  Google Scholar 

  17. K. Subramanian, M. Weigert, O. Borsch, H. Petzold, A. García-Ulloa, E.W. Myers, M. Ader, I. Solovei, M. Kreysing, Rod nuclear architecture determines contrast transmission of the retina and behavioral sensitivity in mice. bioRxiv (2019), p. 752444

    Google Scholar 

  18. A. Werber, H. Zappe, Tunable microfluidic microlenses. Appl. Opt. 44(16), 3238–3245 (2005)

    Article  ADS  Google Scholar 

  19. C.U. Murade, D. van der Ende, F. Mugele, High speed adaptive liquid microlens array. Opt. Express 20(16), 18180–18187 (2012)

    Article  ADS  Google Scholar 

  20. X. Zeng, H. Jiang, Liquid Tunable microlenses based on MEMS techniques. J. Phys. D Appl. Phys. 46(32), 323001 (2013)

    Google Scholar 

  21. J. Shi, Z. Stratton, S.-C.S. Lin, H. Huang, T.J. Huang, Tunable optofluidic microlens through active pressure control of an air–liquid interface. Microfluid. Nanofluidics 9(2–3), 313–318 (2009)

    Google Scholar 

  22. A.R. Hawkins, H. Schmidt, Handbook of Optofluidics (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  23. H. Ren, S. Xu, S.-T. Wu, Effects of gravity on the shape of liquid droplets. Opt. Commun. 283(17), 3255–3258 (2010)

    Article  ADS  Google Scholar 

  24. D.G.A.L. Aarts, M. Schmidt, H.N.W. Lekkerkerker, Direct visual observation of thermal capillary waves. Science 304(5672), 847–850 (2004)

    Article  ADS  Google Scholar 

  25. L. Dong, H. Jiang, Tunable and movable liquid microlens in situ fabricated within microfluidic channels. Appl. Phys. Lett. 91(4), 041109 (2007)

    Google Scholar 

  26. X. Zeng, C. Li, D. Zhu, H.J. Cho, H. Jiang, Tunable microlens arrays actuated by various thermo-responsive hydrogel structures. J. Micromech. Microeng. 20(11), 115035 (2010)

    Google Scholar 

  27. K. Mishra, C. Murade, B. Carreel, I. Roghair, J.M. Oh, G. Manukyan, D. van den Ende, F. Mugele, Optofluidic lens with tunable focal length and asphericity. Scientific Rep. 4, 6378 (2014)

    Article  Google Scholar 

  28. B. Berge, J. Peseux, Variable focal lens controlled by an external voltage: an application of electrowetting. Eur. Phys. J. E 3(2), 159–163 (2000)

    Article  Google Scholar 

  29. T. Krupenkin, S. Yang, P. Mach, Tunable liquid microlens. Appl. Phys. Lett. 82(3), 316–318 (2003)

    Article  ADS  Google Scholar 

  30. S. Kuiper, B.H.W. Hendriks, Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85(7), 1128–1130 (2004)

    Article  ADS  Google Scholar 

  31. F. Krogmann, W. Mönch, H. Zappe, A MEMS-based variable micro-lens system. J. Opt. A Pure Appl. Opt. 8(7), S330 (2006)

    Google Scholar 

  32. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, P. Ferraro, Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. Opt. Express 16(11), 8084–8093 (2008)

    Article  ADS  Google Scholar 

  33. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, P. Ferraro, Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy. Opt. Express 17(4), 2487–2499 (2009)

    Article  ADS  Google Scholar 

  34. C. Li, H. Jiang, Electrowetting-driven variable-focus microlens on flexible surfaces. Appl. Phys. Lett. 100(23), 231105 (2012)

    Google Scholar 

  35. H. Ren, S.-T. Wu, Tunable-focus liquid microlens array using dielectrophoretic effect. Opt. Express 16(4), 2646–265 (2008)

    Article  ADS  Google Scholar 

  36. L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442(7102), 551 (2006)

    Google Scholar 

  37. K.-H. Jeong, G.L. Liu, N. Chronis, L.P. Lee, Tunable microdoublet lens array. Opt. Express 12(11), 2494–2500 (2004)

    Article  ADS  Google Scholar 

  38. J. Chen, W. Wang, J. Fang, K. Varahramyan, Variable-focusing microlens with microfluidic chip. J. Micromech. Microeng. 14(5), 675–680 (2004)

    Article  ADS  Google Scholar 

  39. N. Chronis, G. Liu, K.-H. Jeong, L. Lee, Tunable liquid-filled microlens array integrated with microfluidic network. Opt. Express 11(19), 2370–2378 (2003)

    Article  ADS  Google Scholar 

  40. W. Zhang, H. Zappe, A. Seifert, Wafer-scale fabricated thermo-pneumatically tunable microlenses. Light Sci. Appl. 3(2), e145 (2014)

    Google Scholar 

  41. S.K.Y. Tang, C.A. Stan, G.M. Whitesides, Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. Lab Chip 8(3), 395–401 (2008)

    Article  Google Scholar 

  42. J. Kim, N. Singh, L.A. Lyon, Label-free biosensing with hydrogel microlenses. Angew. Chem. Int. Ed. 45(9), 1446–1449 (2006)

    Article  Google Scholar 

  43. B. Kuswandi, J. Huskens, W. Verboom et al., Optical sensing systems for microfluidic devices: a review. Anal. Chim. Acta 601(2), 141–155 (2007)

    Article  Google Scholar 

  44. C. McDonald, D. McGloin, Low-cost optical manipulation using hanging droplets of PDMS. RSC Adv. 5(68), 55561–55565 (2015)

    Article  Google Scholar 

  45. Z. Li, D. Psaltis, Optofluidic dye lasers. Microfluid. Nanofluidics 4(1–2), 145–158 (2007)

    Google Scholar 

  46. M. Born, E. Wolf, A.B. Bhatia, P.C. Clemmow, D. Gabor, A.R. Stokes, A.M. Taylor, P.A. Wayman, W.L. Wilcock, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  47. E. Chevallier, A. Mamane, H.A. Stone, C. Tribet, F. Lequeux, C. Monteux, Pumping-out photo-surfactants from an air–water interface using light. Soft Matter 7(17), 7866–7874 (2011)

    Article  ADS  Google Scholar 

  48. Y. Wang, G. Singh, D.M. Agra-Kooijman, M. Gao, H.K. Bisoyi, C. Xue, M.R. Fisch, S. Kumar, Q. Li, Room temperature heliconical twist-bend nematic liquid crystal. Cryst. Eng. Comm. 17(14), 2778–2782 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagelberg, S. (2020). Multi-Phase Droplets as Dynamic Compound Micro-Lenses. In: Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-53460-8_2

Download citation

Publish with us

Policies and ethics