Skip to main content

Recursion Relations from Braid Matrices

  • Chapter
  • First Online:
Aspects of Scattering Amplitudes and Moduli Space Localization

Part of the book series: Springer Theses ((Springer Theses))

  • 173 Accesses

Abstract

In this chapter recursion relations for intersection numbers are introduced. The starting point is a review of the fibre bundle structure of the moduli space and the behaviour of twisted cohomologies under such fibration. We introduce special classes of twisted forms having good decomposition properties, called fibration bases, which serve as bases for the expansion of more general forms. This effectively allows one to formulate recursion relations for scattering amplitudes on the moduli space by reducing the problem to a computation of intersection numbers on individual punctured spheres and gluing the results together. The matrices needed for this computation, called braid matrices, form representations of the pure braid group. The final expression involves only matrix inversion and multiplication, as well as taking one-dimensional residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We thank D. Fuchs, A. Schwarz, and E. Witten for suggesting this to us.

  2. 2.

    It is known that one can construct a rank-(n−2)! Gauss–Manin connection in an auxiliary variable \(z_0 \in \mathbb {C}\mathbb {P}^1 {\setminus } \{0,1,\infty \}\), whose horizontal sections compute certain finite open-string integrals for n punctures in the asymptotic limit z 0→0, and for n+1 punctures at z 0→1 [234, 235]. The two limits are connected by an associator [236, 237], thus providing a recursion for these integrals in n. Using this setup Terasoma proved that coefficients of the Taylor expansion of such open-string integrals around α′ = 0 are \(\mathbb {Q}\)-linear combinations of multiple zeta values (MZVs) [234]. The conjecture [238] that coefficients of closed-string integrals fall into a special class of single-valued MZVs [239] was recently proven by Brown and Dupont [240], see also [241, 242].

  3. 3.

    The manipulations in Lemma 3.1 require any solution \(\psi _{+,a}^r\) of the Pfaffian system of differential equations \(\boldsymbol \nabla _{p}^+ \psi _{+,a}^r = \sigma _{+,a}\). However, the homogeneous solution of this system, given simply by \(\psi _{+}^r = \mathbf {c}\, \mathcal {P}\exp ( - \int _{z_r}^{z_p} \boldsymbol {\omega }_p^+ )\) for a constant vector c, is multi-valued in the neighbourhood of each z p = z r and hence does not have a holomorphic expansion. This is why we only consider inhomogeneous solutions.

  4. 4.

    In the cases when orthonormal bases are not known, i.e., \(\langle f_{-,a}^\vee | f_{+,b}\rangle _{\omega _p} =: {\mathbf {C}}_{ab} \neq \delta _{ab}\), following the above steps gives \(\sigma _{-,a} = \sum _b \langle \varphi _{-} | f_{+,b} \rangle _{\omega _p} {\mathbf {C}}^{-1}_{ba}\), \(\sigma _{+,a} = \sum _b {\mathbf {C}}^{-1}_{ab} \langle f_{-,b}^\vee | \varphi _{+} \rangle _{\omega _p}\), and \((\boldsymbol \omega _{p}^+)_{ab} = \sum _c {\mathbf {C}}^{-1}_{bc} \langle f_{-,c}^\vee | (d_{\Sigma _{p}} \!{+} \omega _{p-1} {\wedge }) f_{+,a} \rangle _{\omega _p}\), \((\boldsymbol \omega _{p}^-)_{ab} = -\sum _c \langle (d_{\Sigma _{p}} \!{-} \omega _{p-1} {\wedge }) f_{-,a}^\vee | f_{+,c} \rangle _{\omega _p} {\mathbf {C}}_{cb}^{-1}\). The recursion relations keep their form; the functions \(\psi _{\pm ,a}^r\) are solutions of \(\boldsymbol \nabla _p^\pm \psi _{\pm ,a}^r = \sigma _{\pm ,a}\) with σ ±,a and \(\boldsymbol \omega _p^{\pm }\) given above.

  5. 5.

    Defining \({\mathbf {r}}_{ij} := \int \boldsymbol {\Omega }^{ij}_p d\log (z_i {-} z_j)\) it is straightforward to check that (3.38) and (2.4) imply

    $$\displaystyle \begin{aligned}{}[ {\mathbf{r}}_{ij}, {\mathbf{r}}_{ik} ] + [ {\mathbf{r}}_{ij}, {\mathbf{r}}_{jk} ] + [ {\mathbf{r}}_{ik}, {\mathbf{r}}_{jk} ] = 0, \end{aligned} $$
    (3.39)

    which are the classical Yang–Baxter relations, see, e.g., [243]. They can be understood as the linearized version of the quantum Yang–Baxter relations

    $$\displaystyle \begin{aligned} {\mathbf{R}}_{ij} {\mathbf{R}}_{ik} {\mathbf{R}}_{jk} = {\mathbf{R}}_{jk} {\mathbf{R}}_{ik} {\mathbf{R}}_{ij} \end{aligned} $$
    (3.40)

    for \({\mathbf {R}}_{ij} := \mathbb {I} + \alpha ' {\mathbf {r}}_{ij} + \ldots \) in the limit α′→ 0.

References

  1. J. Harer, D. Zagier, The Euler characteristic of the moduli space of curves. Invent. Math. 85(3), 457–485 (1986). ISSN: 1432-1297. https://doi.org/10.1007/BF01390325

    Article  ADS  MathSciNet  Google Scholar 

  2. R.C. Penner, Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27(1), 35–53 (1988). https://doi.org/10.4310/jdg/1214441648

    Article  MathSciNet  Google Scholar 

  3. R. Bott, L.W. Tu. Differential Forms in Algebraic Topology, vol. 82 (Springer, Berlin, 2013). https://doi.org/10.1007/978-1-4757-3951-0

    MATH  Google Scholar 

  4. A.T. Fomenko, D.B. Fuks, Homotopical Topology, vol. 273 (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-23488-5

    Book  Google Scholar 

  5. K. Ohara, Intersection numbers of twisted cohomology groups associated with Selberg-type integrals (1998). http://www.math.kobe-u.ac.jp/HOME/ohara/Math/980523.ps

  6. K. Ohara, Y. Sugiki, N. Takayama, Quadratic relations for generalized hypergeometric functions pF p−1. Funkcial. Ekvac. 46(2), 213–251 (2003). https://doi.org/10.1619/fesi.46.213

    Article  MathSciNet  Google Scholar 

  7. K. Mimachi, K. Ohara, M. Yoshida, Intersection numbers for loaded cycles associated with Selberg-type integrals. Tohoku Math. J. (2) 56(4), 531–551 (2004). https://doi.org/10.2748/tmj/1113246749

  8. T. Terasoma, Selberg integrals and multiple zeta values. Compos. Math. 133(1), 1–24 (2002). https://doi.org/10.1023/A:1016377828316. arXiv: math/9908045 [math.AG]

  9. J. Broedel et al., All order α ′-expansion of superstring trees from the Drinfeld associator. Phys. Rev. D89(6), 066014 (2014). https://doi.org/10.1103/PhysRevD.89.066014. arXiv: 1304.7304 [hep-th]

  10. V.G. Drinfel’d, On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(\(\overline {\mathbb Q}/\mathbb Q\)) (English). Leningr. Math. J. 2(4), 829–860 (1991). ISSN: 1048-9924

    Google Scholar 

  11. T.Q.T. Le, J. Murakami, Kontsevich’s integral for the Homfly polynomial and relations between values of multiple zeta functions. Topol. Appl. 62(2), 193–206 (1995). ISSN: 0166-8641. https://doi.org/10.1016/0166-8641(94)00054-7

    Article  MathSciNet  Google Scholar 

  12. S. Stieberger, Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator. J. Phys. A47, 155401 (2014). https://doi.org/10.1088/1751-8113/47/15/155401. arXiv: 1310.3259 [hep-th]

  13. F. Brown, Single-valued motivic periods and multiple zeta values. SIGMA 2, e25 (2014). https://doi.org/10.1017/fms.2014.18. arXiv: 1309.5309 [math.NT]

  14. F. Brown, C. Dupont, Single-valued integration and superstring amplitudes in genus zero (2018). arXiv: 1810.07682 [math.NT]

    Google Scholar 

  15. O. Schlotterer, O. Schnetz, Closed strings as single-valued open strings: a genus-zero derivation. J. Phys. A52(4), 045401. https://doi.org/10.1088/1751-8121/aaea14. arXiv: 1808.00713 [hep-th]

  16. P. Vanhove, F. Zerbini, Closed string amplitudes from single-valued correlation functions (2018). arXiv: 1812.03018 [hep-th]

    Google Scholar 

  17. M. Jimbo, Yang–Baxter Equation in Integrable Systems, vol. 10 (World Scientific, Singapore, 1990)

    Book  Google Scholar 

  18. K. Aomoto, Un théorème du type de Matsushima–Murakami concernant l’intégrale des fonctions multiformes. J. Math. Pures Appl. 52, 1–11 (1973). http://hdl.handle.net/2433/106918

    Article  MathSciNet  Google Scholar 

  19. T. Kohao, Série de Poincaré–Koszul associée aux groupes de tresses pures. Invent. Math. 82(1), 57–75 (1985). ISSN: 1432-1297. https://doi.org/10.1007/BF01394779

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Kohno, Monodromy representations of braid groups and Yang–Baxter equations (English). Ann. Inst. Fourier 37(4), 139–160 (1987). https://doi.org/10.5802/aif.1114. http://www.numdam.org/item/AIF_1987__37_4_139_0

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mizera, S. (2020). Recursion Relations from Braid Matrices. In: Aspects of Scattering Amplitudes and Moduli Space Localization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-53010-5_3

Download citation

Publish with us

Policies and ethics