Skip to main content

Extravehicular Activity

  • Chapter
  • First Online:
Life Support Systems for Humans in Space
  • 1829 Accesses

Abstract

Without an extravehicular activity (EVA) capability, the ISS could not have been constructed. Period. Not only is EVA vital for the construction of orbiting outposts, but it also enables essential maintenance and repair activities to be conducted. EVA equipment – the extravehicular mobility unit, or EMU – is basically a life support suit that includes a portable life support system capable of providing its occupant with oxygen and removing carbon dioxide, just like the life support system on board the ISS. These EMUs are highly complex and extremely expensive (each one costs about $10 million), and their design crosses myriad engineering disciplines. Not surprisingly, training for an EVA is a time-consuming and exacting task, with at least 6 hours of practice required for every 1 hour of planned EVA. Then there is the issue of prebreathing, a carefully planned procedure that must precede each and every EVA. We’ll learn about the prebreathe and all the other factors that comprise EVAs and EMUs in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conkin, J., Gernhardt, M. L., Powell, M. R., & Pollock, N. (2004). A probability model of decompression sickness at 4.3 psia after exercise prebreathe. In NASA Technical Publication NASA/TP-2004-213158. Houston: Johnson Space Center.

    Google Scholar 

  2. Dixon, G. A., Adams, J. D., Olson, R. M. &, Fitzpatrick, E. L. (1980). Validation of additional prebreathing times for air interruptions in the shuttle EVA prebreathing profile. In Proceedings of the 1980 Aerospace Medical Association Annual Scientific Meeting, Anaheim, CA, 16–7.

    Google Scholar 

  3. Gernhardt, M. L., Conkin, J., Foster, P. P., Pilmanis, A. A., Butler, B. D., Fife, C. E., et al. (2000). Design of a 2-hr prebreathe protocol for space walks from the international space station. [Abstract # 43]. Aviation, Space, and Environmental Medicine, 71, 49.

    Google Scholar 

  4. Gernhardt, M. L., Dervay, J. P., Welch, J., Conkin, J., Acock, K., Lee, S., Moore, A., & Foster, P. (2003). Implementation of an exercise prebreathe protocol for construction and maintenance of the international space station- results to date. [Abstract # 145]. Aviation, Space, and Environmental Medicine, 74, 397.

    Google Scholar 

  5. Kumar, K. V., Waligora, J. W., & Gilbert, J. H., III. (1992). The influence of prior exercise at anaerobic threshold on decompression sickness. Aviation, Space, and Environmental Medicine, 63, 899–904.

    Google Scholar 

  6. Webb, J. T., Fischer, M. D., Heaps, C. L., & Pilmanis, A. A. (1996). Exercise-enhanced preoxygenation increases protection from decompression sickness. Aviation, Space, and Environmental Medicine, 67, 618–624. Webb JT, Kannan N, Pilmanis AA. Gender not a factor for altitude decompression sickness risk. Aviation, Space, and Environmental Medicine. 2003; 74:2-10.

    Google Scholar 

  7. Blatteau, J.-E., Souraud, J.-B., Gempp, E., & Boussuges, A. (2006). Gas nuclei, their origin, and their role in bubble formation. Aviation, Space, and Environmental Medicine, 77, 1068–1076.

    Google Scholar 

  8. Boothby, W. M., Luft, U. C., & Benson, O. O., Jr. (1952). Gaseous nitrogen elimination. Experiments when breathing oxygen at rest and at work with comments on dysbarism. Journal of Aviation Medicine, 23, 141–176.

    Google Scholar 

  9. Foster, P. P., Feiveson, A. H., Glowinski, R., Izygon, M., & Boriek, A. M. (2000b). A model for influence of exercise on formation and growth of tissue bubbles during altitude decompression. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 279, R2304–R2316.

    Article  Google Scholar 

  10. Cameron, B. A., Olstad, C. S., Clark, J. M., Gelfand, R., Ochroch, E. A., & Eckenhoff, R. G. (2007). Risk factors for venous gas emboli after decompression from prolonged hyperbaric exposures. Aviation, Space, and Environmental Medicine, 78, 493–499.

    Google Scholar 

  11. Kumar, K. V., Powell, M. R., & Waligora, J. M. (1993a). Evaluation of the risk of circulating microbubbles under simulated extravehicular activity after bed rest. In SAE Technical Series No. 932220. 23rd International Conference on Environmental Systems. Colorado Springs, CO, 5.

    Google Scholar 

  12. Powell, M. R., Waligora, J. M., Norfleet, W. T., & Kumar, K. V. (1993). Project ARGO - Gas phase formation in simulated microgravity. NASA Technical Memorandum 104762. Johnson Space Center: Houston.

    Google Scholar 

  13. Conkin, J., Powell, M. R., Foster, P. P., & Waligora, J. M. (1998). Information about venous gas emboli improves prediction of hypobaric decompression sickness. Aviation, Space, and Environmental Medicine, 69, 8.

    Google Scholar 

  14. Conkin, J., Waligora, J. M., Horrigan, D. J., Jr., & Hadley, A. T., III. (1987). The effect of exercise on venous gas emboli and decompression sickness in human subjects at 4.3 psia. NASA Technical Memorandum 58278. Johnson Space Center: Houston.

    Google Scholar 

  15. Horrigan, D. J., & Waligora, J. M. The development of effective procedures for the protection of space shuttle crews against decompression sickness during extravehicular activities. Proceedings of the 1980 Aerospace Medical Association Annual Scientific Meeting, Anaheim, CA, May, 1980; 14-5. Risk of Decompression Sickness (DCS) 65

    Google Scholar 

  16. Pilmanis, A. A., Petropoulos, L. J., Kannan, N., & Webb, J. T. (2004). Decompression sickness risk model: development and validation by 150 prospective hypobaric exposures. Aviation, Space, and Environmental Medicine, 75, 749–759.

    Google Scholar 

  17. Ryles, M. T., & Pilmanis, A. A. (1996). The initial signs and symptoms of altitude decompression sickness. Aviation, Space, and Environmental Medicine, 67, 983–989.

    Google Scholar 

  18. Dixon, J. P. (1992). Death from altitude-induced decompression sickness: major pathophysiologic factors. In A. A. Pilmanis (Ed.), The Proceedings of the 1990 Hypobaric Decompression Sickness Workshop (Report AL-SR-1992-0005) (pp. 97–105). San Antonio: Brooks AFB.

    Google Scholar 

  19. Dervay, J., & Gernhardt, M. (2001). Decompression sickness in spaceflight: Likelihood, prevention and treatment. Version 1.04.

    Google Scholar 

  20. Hankins, T. C., Webb, J. T., Neddo, G. C., Pilmanis, A. A., & Mehm, W. J. (2000). Test and evaluation of exerciseenhanced preoxygenation in U-2 operations. Aviation, Space, and Environmental Medicine, 71, 822–826.

    Google Scholar 

  21. Loftin, K. C., Conkin, J., & Powell, M. R. (1997). Modeling the effects of exercise during 100% oxygen prebreathe on the risk of hypobaric decompression sickness. Aviation, Space, and Environmental Medicine, 68, 199–204.

    Google Scholar 

  22. Conkin, J., Kumar, K. V., Powell, M. R., Foster, P. P., & Waligora, J. M. (1996). A probabilistic model of hypobaric decompression sickness based on 66 chamber tests. Aviation, Space, and Environmental Medicine, 67, 176–183.

    Google Scholar 

  23. Webb, J. T., & Krutz, R. W. (1988). An annotated bibliography of hypobaric decompression sickness research conducted at the crew technology division, USAF School of Aerospace Medicine, Brooks AFB, Texas from 1983-1988. USAFSAM-TP-88-10, Brooks AFB, TX

    Google Scholar 

  24. Dujić, Z., Duplancic, D., Marinovic-Terzic, I., Bakovic, D., Ivancev, V., Valic, Z., Eterovic, D., Petri, N. M., Wisløff, U., & Brubakk, A. O. (2004). Aerobic exercise before diving reduces venous gas bubble formation in humans. Journal of Physiology, 555, 637–642.

    Article  Google Scholar 

  25. Gernhardt, M. L. Overview of Shuttle and ISS Exercise Prebreathe Protocols and ISS Protocol Accept/Reject Limits. Prebreathe Protocol for Extravehicular Activity Technical Consultation Report; 96-125; NASA/TM-2008-215124

    Google Scholar 

  26. Krutz, R. W., & Dixon, G. A. (1987). The effect of exercise on bubble formation and bends susceptibility at 9,100 m (30,000 ft; 4.3 psia). Aviation, Space, and Environmental Medicine, 58(9, Suppl), A97–A99.

    Google Scholar 

  27. Pollock, N. W., Natoli, M. J., Vann, R. D., Nishi, R. Y., Sullivan, P. J., Gernhardt, M. L., Conkin, J., & Acock, K. E. (2004a). High altitude DCS risk is greater for low fit individuals completing oxygen prebreathe based on relative intensity exercise prescriptions. [Abstract #50]. Aviation, Space, and Environmental Medicine, 75, B11.

    Google Scholar 

  28. McIver, R. G., Beard, S. E., Bancroft, R. W., & Allen, T. H. (1967). Treatment of decompression sickness in simulated space flight. Aerospace Medicine, 38, 1034–1036.

    Google Scholar 

  29. Pilmanis, A. A., Webb, J. T., Balldin, U. I., Conkin, J., & Fischer, J. R. (2010). Air break during preoxygenation and risk of altitude decompression sickness. Aviation, Space, and Environmental Medicine, 81, 944–950.

    Article  Google Scholar 

  30. Rudge, F. W. (1992). The role of ground level oxygen in the treatment of altitude chamber decompression sickness. Aviation, Space, and Environmental Medicine, 63, 1102–1105.

    Google Scholar 

  31. Vann, R. D., Gerth, W. A., Leatherman, N. E., & Feezor, M. D. (1987). A likelihood analysis of experiments to test altitude decompression protocols for shuttle operations. Aviation, Space, and Environmental Medicine, 58, A106–A109.

    Google Scholar 

  32. Conkin, J., Edwards, B., Waligora, J., & Horrigan, D. (1987). Empirical Models for Use in Designing Decompression Procedures for Space Operations. NASA-TM-100456, 1–52

    Google Scholar 

  33. Hall, W. M., & Cory, E. L. (1950). Anoxia in Explosive Decompression Injury. American Journal of Physiology, 160, 361–365.

    Article  Google Scholar 

  34. Dunn, J. E., Bancroft, R. W., Haymaker, W., & Foft, D. W. (1965). Experimental Animal Decompressions to Less Than 2 mmHg Abs. (Pathological Effects). Aerospace Medicine, 36, 725–732.

    Google Scholar 

  35. Burch, B. H., Kemp, J. P., Vail, E. G., Frye, S. A., & Hitchcock, F. A. (1952). Some Effects of Explosive Decompression and Subsequent Exposure to 30 mmHg Upon the Hearts of Dogs. Journal of Aviation Medicine, 23, 159–167.

    Google Scholar 

  36. Cooke, J. P., & Bancroft, R. W. (1966). Some Cardiovascular Responses in Anesthetized Dogs During Repeated Decompressions to a Near-Vacuum. Aerospace Medicine, 37, 1148–1152.

    Google Scholar 

  37. Edelmann, A., Whitehorn, W. V., Lein, A., & Hitchcock, F. A. Pathological Lesions Produced by Explosive Decompression, WADC-TR-51-191.

    Google Scholar 

  38. Koestler, A. G. (1967). Replication and Extension of Rapid Decompression of Chimpanzees to a Near Vacuum. ARL-TR-67-2, Aeromedical Research Lab, Holloman Air Force Base.

    Google Scholar 

Suggested Reading

  • Conkin, J., Gernhardt, M. L., Powell, M. R., & Pollock N. (2004). A probability model of decompression sickness at 4.3 psia after exercise prebreathe. NASA Technical Publication NASA/TP-2004-213158, Houston: Johnson Space Center

    Google Scholar 

  • Jenkins, D. R. Dressing for Altitude: U.S. Aviation Pressure Suits, Wiley Post to Space Shuttle. NASA SP; 2011-595). ISBN 978-0-16-090110-2. Also available as a free online book at: https://www.nasa.gov/pdf/683215main_DressingAltitude-ebook.pdf.

  • Thomas, K. S., & McMann, H. J. (2006). US spacesuits. Springer-Praxis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Seedhouse .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seedhouse, E. (2020). Extravehicular Activity. In: Life Support Systems for Humans in Space. Springer, Cham. https://doi.org/10.1007/978-3-030-52859-1_6

Download citation

Publish with us

Policies and ethics