Skip to main content

Proposal of a Highly Birefringent Bow-Tie Photonic Crystal Fiber for Nonlinear Applications

  • Conference paper
  • First Online:
Cyber Security and Computer Science (ICONCS 2020)

Abstract

In this letter, a bow-tie-type photonic crystal fiber (PCF) with high birefringence (Hi-Bi) has been proposed. The core of the PCF is elliptical with Chalcogenide glass (\(Ga_{8}Sb_{32}S_{60}\)) material. The whole analysis of the PCF is finished by the finite element method (FEM) for wavelength ranging from 2,000 nm to 3,000 nm to obtain some optical parameters like birefringence, beat length, power fraction, numerical aperture, effective refractive area, and nonlinearity. Therefore, a perfectly matched layer (PML) is also used to throw out unwanted radiation directed as an absorbing boundary condition (ABC). It has generated high birefringence (Hi-Bi) of 0.287 at 2,975 nm wavelength, the highest power fraction of 89.39% at 2,000 nm wavelength, the higher numerical aperture of 0.86, and the better nonlinearity of 6.10 \(\times \) \(10^{3}\) \(\mathrm{W}^{-1} \mathrm{Km}^{-1}\). Hence, the proposed PCF plays a significant role in PCF areas with the better polarization filter, cross talk (CT), sensing, and nonlinear applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paul, B.K., Moctader, M.G., Ahmed, K., Khalek, M.A.: Nanoscale GaP strips based photonic crystal fiber with high nonlinearity and high numerical aperture for laser applications. Results Phys. 10, 374–378 (2018)

    Article  Google Scholar 

  2. Sonne, A., Ouchar, A., Sonne, K.: Improving of high birefringence with negative dispersion using double octagonal lattice photonic crystal fiber. Optik 127(1), 8–10 (2016)

    Article  Google Scholar 

  3. Wang, A., et al.: Visible supercontinuum generation with sub-nanosecond 532-nm pulses in all-solid photonic bandgap fiber. IEEE Photonics Technol. Lett. 24(2), 143–145 (2011)

    Article  Google Scholar 

  4. Yatsenko, Y.P., Pryamikov, A.D.: Parametric frequency conversion in photonic crystal fibres with germanosilicate core. J. Opt. A: Pure Appl. Opt. 9(7), 716 (2007)

    Article  Google Scholar 

  5. Ahmed, F., Roy, S., Paul, B.K., Ahmed, K., Bahar, A.N.: Extremely low loss of photonic crystal fiber for terahertz wave propagation in optical communication applications. J. Opt. Commun. (2018). https://doi.org/10.1515/joc-2018-0009

    Article  Google Scholar 

  6. Habib, M.S., Ahmad, R., Habib, M.S., Hasan, M.I.: Residual dispersion compensation over the S+ C+ L+ U wavelength bands using highly birefringent octagonal photonic crystal fiber. Appl. Opt. 53(14), 3057–3062 (2014)

    Article  Google Scholar 

  7. Emiliyanov, G., Hoiby, P., Pedersen, L., Bang, O.: Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 13(3), 3242–3251 (2013)

    Article  Google Scholar 

  8. Woodward, R.M., Wallace, V.P., Arnone, D.D., Linfield, E.H., Pepper, M.: Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29(2–3), 257–259 (2003)

    Article  Google Scholar 

  9. Zhang, J., Grischkowsky, D.: Waveguide terahertz time-domain spectroscopy of nanometer water layers. Opt. Lett. 29(14), 1617–1619 (2004)

    Article  Google Scholar 

  10. Zhanqiang, H., Zhang, Y., Zhou, H., Wang, Z., Zeng, X.: Mid-infrared high birefringence bow-tie-type Ge20Sb15Se65 based PCF with large nonlinearity by using hexagonal elliptical air hole. Fiber Integr. Opt. 37(1), 21–36 (2018)

    Article  Google Scholar 

  11. Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5(3), 141 (2011)

    Article  Google Scholar 

  12. Eggleton, B.J.: Chalcogenide photonics: fabrication, devices and applications Introduction. Opt. Express 18(25), 26632–26634 (2010)

    Article  Google Scholar 

  13. Zhang, M.Y., Li, S.G., Yao, Y.Y., Zhang, L., Fu, B., Yin, G.B.: Influence of micro-structured core on characteristics of photonic crystal fibers. Acta Phys. Sinica 59(5), 3278–3285 (2010)

    Article  Google Scholar 

  14. Agrawal, A., Kejalakshmy, N., Chen, J., Rahman, B.M.A., Grattan, K.T.V.: Golden spiral photonic crystal fiber: polarization and dispersion properties. Opt. Lett. 33(22), 2716–2718 (2008)

    Article  Google Scholar 

  15. Wang, W., Yang, B., Song, H., Fan, Y.: Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice. Optik-Int. J. Light Electron Opt. 124(17), 2901–2903 (2013)

    Article  Google Scholar 

  16. Revathi, S., Inbathini, S.R., Saifudeen, R.A.: Highly nonlinear and birefringent spiral photonic crystal fiber. Adv. OptoElectronics 2014, 464391 (2014)

    Article  Google Scholar 

  17. Revathi, S., Inabathini, S., Sandeep, R.: Soft glass spiral photonic crystal fiber for large nonlinearity and high birefringence. Opt. Appl. 45(1), 15–24 (2015)

    Google Scholar 

  18. Yang, T., Wang, E., Jiang, H., Hu, Z., Xie, K.: High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Exp. 23(7), 8329–8337 (2015)

    Article  Google Scholar 

  19. Hasan, M.I., Habib, M.S., Habib, M.S., Razzak, S.A.: Design of hybrid photonic crystal fiber: polarization and dispersion properties. Photonics Nanostruct. Fundam. Appl. 12(2), 205–211 (2014)

    Article  Google Scholar 

  20. Liao, J., et al.: Ultrahigh birefringent nonlinear slot silicon microfiber with low dispersion. IEEE Photonics Technol. Lett. 27(17), 1868–1871 (2015)

    Article  Google Scholar 

  21. Hui, Z.Q., et al.: Midinfrared high birefringence \(Ga_{20}Sb_{15}S_{65}\)-based photonic crystal fiber with large nonlinearity using dual-rhombic air hole. J. Nanophotonics 12(1), 016018 (2018)

    Article  Google Scholar 

  22. Ohishi, Y.: New prospect of soft glass highly nonlinear microstructured optical fibers. In: Conference on Lasers and Electro-Optics/Pacific Rim. Optical Society of America, TuA4\(_-\)2 (2013)

    Google Scholar 

  23. Chauhan, P., Kumar, A., Kalra, Y., Saini, T.S.: Design and analysis of photonic crystal fiber in Ga-Sb-S chalcogenide glass for nonlinear applications. In: AIP Conference Proceedings, vol. 2009, no. 1, p. 020047 (2018)

    Google Scholar 

  24. Amiri, I.S., et al.: Design of \(Ga_{20}Sb_{15}S_{65}\) embedded rectangular slotted quasi photonic crystal fiber for higher nonlinearity applications. Optik 184, 63–69 (2019)

    Article  Google Scholar 

  25. Ahmed, K., Paul, B.K., Jabin, M.A., Biswas, B.: FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber. Ceram. Int. 45(12), 15343–15347 (2019)

    Article  Google Scholar 

  26. Hassan, M.M., Kabir, M.A., Hossain, M.N., Biswas, B., Paul, B.K., Ahmed, K.: Photonic crystal fiber for robust orbital angular momentum transmission: design and investigation. Opt. Quantum Electron. 52(1), 8 (2020)

    Article  Google Scholar 

  27. Hui, Z., Zhang, Y., Soliman, A.H.: Mid-infrared dual-rhombic air hole \(Ga_{20}Sb_{15}S_{65}\) chalcogenide photonic crystal fiber with high birefringence and high nonlinearity. Ceram. Int. 44(9), 10383–10392 (2018)

    Article  Google Scholar 

  28. Wei, S., et al.: Design on a highly birefringent and highly nonlinear tellurite ellipse core photonic crystal fiber with two zero dispersion wavelengths. Opt. Fiber Technol. 20(4), 320–324 (2014)

    Article  Google Scholar 

  29. Dabas, B., Sinha, R.K.: Design of highly birefringent chalcogenide glass PCF: a simplest design. Opt. Commun. 284(5), 1186–1191 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawsar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, M.M. et al. (2020). Proposal of a Highly Birefringent Bow-Tie Photonic Crystal Fiber for Nonlinear Applications. In: Bhuiyan, T., Rahman, M.M., Ali, M.A. (eds) Cyber Security and Computer Science. ICONCS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-52856-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52856-0_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52855-3

  • Online ISBN: 978-3-030-52856-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics