Skip to main content

Nongenetic Forms of Steroid-Resistant Nephrotic Syndrome

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Historically, the classification of steroid-resistant nephrotic syndrome (SRNS) was based on histopathology alone, with minimal change disease and especially focal segmental glomerulosclerosis (FSGS) being the dominant lesions. Nowadays, genetic forms are differentiated from nongenetic forms. The latter can be broadly divided into two groups: (1) idiopathic SRNS is considered to be mediated by a (yet unidentified) permeability factor and (2) secondary forms of FSGS either resulting from a maladaptive response of podocytes to conditions promoting hyperfiltration (obesity, acquired solitary functional kidney, or uncontrolled hypertension) or distinct podocyte injury (e.g., viral infections, exposure to toxins or drugs). Histopathology is still an important diagnostic tool and can help to assess prognosis and recent studies have shown its potential as research tool in clarifying pathogenesis. Large studies and registry data have shown that overall prognosis of SRNS has improved in recent years because potent immunosuppressants are available. Especially the use of calcineurin inhibitors (in combination with steroids and RAAS inhibitors) is now recommended as first-line treatment option. For treatment of refractory patients, B-cell depleting antibodies (e.g., rituximab) and mycophenolic acid or pulse methylprednisolone are an option. Other interventions may be effective in individual patients. Unfortunately, patients unresponsive to treatment have a high risk of developing end-stage kidney failure and have a considerable risk of disease recurrence after kidney transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Habib R, Kleinknecht C. The primary nephrotic syndrome of childhood. Classification and clinicopathologic study of 406 cases. Pathol Annu. 1971;6:417–74.

    CAS  PubMed  Google Scholar 

  2. Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A report of the International Study of Kidney Disease in Children. Kidney Int. 1981;20(6):765–71.

    Google Scholar 

  3. Li AS, Ingham JF, Lennon R. Genetic disorders of the glomerular filtration barrier. Clin J Am Soc Nephrol. 2020;15(12):1818–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol. 2015;11(2):76–87.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2017;12(3):502–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kriz W. The pathogenesis of ‘classic’ focal segmental glomerulosclerosis-lessons from rat models. Nephrol Dial Transplant. 2003;18(Suppl 6):vi39–44.

    PubMed  Google Scholar 

  7. Kriz W, et al. A role for podocytes to counteract capillary wall distension. Kidney Int. 1994;45(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  8. LeHir M, Kriz W. New insights into structural patterns encountered in glomerulosclerosis. Curr Opin Nephrol Hypertens. 2007;16(3):184–91.

    Article  PubMed  Google Scholar 

  9. De Vriese AS, et al. Differentiating primary, genetic, and secondary FSGS in adults: a clinicopathologic approach. J Am Soc Nephrol. 2018;29(3):759–74.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Podesta MA, Ponticelli C. Autoimmunity in focal segmental glomerulosclerosis: a long-standing yet elusive association. Front Med (Lausanne). 2020;7:604961.

    Article  Google Scholar 

  11. Savin VJ, et al. Multiple targets for novel therapy of FSGS associated with circulating permeability factor. Biomed Res Int. 2017;2017:6232616.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kienzl-Wagner K, Waldegger S, Schneeberger S. Disease recurrence-the sword of Damocles in kidney transplantation for primary focal segmental glomerulosclerosis. Front Immunol. 2019;10:1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maas RJ, Deegens JK, Wetzels JF. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol Dial Transplant. 2014;29(12):2207–16.

    Article  CAS  PubMed  Google Scholar 

  14. Kronbichler A, et al. Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J Immunol Res. 2016;2016:2068691.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Salant DJ. Podocyte expression of B7-1/CD80: is it a reliable biomarker for the treatment of proteinuric kidney diseases with abatacept? J Am Soc Nephrol. 2016;27(4):963–5.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, et al. CD40/CD40L signaling as a promising therapeutic target for the treatment of renal disease. J Clin Med. 2020;9(11):3653.

    Article  CAS  PubMed Central  Google Scholar 

  17. Hayek SS, et al. Soluble Urokinase receptor and chronic kidney disease. N Engl J Med. 2015;373(20):1916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kriz W, Lemley KV. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr Nephrol. 2017;32(3):405–17.

    Article  PubMed  Google Scholar 

  19. Weisinger JR, et al. The nephrotic syndrome: a complication of massive obesity. Ann Intern Med. 1974;81(4):440–7.

    Article  CAS  PubMed  Google Scholar 

  20. Frystyk J, et al. Circulating levels of free insulin-like growth factors in obese subjects: the impact of type 2 diabetes. Diabetes Metab Res Rev. 1999;15(5):314–22.

    Article  CAS  PubMed  Google Scholar 

  21. Wolf G, et al. Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis [see comments]. Kidney Int. 1999;56(3):860–72.

    Article  CAS  PubMed  Google Scholar 

  22. Hoy WE, et al. A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease. Kidney Int. 1999;56(3):1072–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hughson M, et al. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63(6):2113–22.

    Article  PubMed  Google Scholar 

  24. Manalich R, et al. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 2000;58(2):770–3.

    Article  CAS  PubMed  Google Scholar 

  25. Low Birth, W. and G. Nephron number working, the impact of kidney development on the life course: a consensus document for action. Nephron. 2017;136(1):3–49.

    Article  Google Scholar 

  26. Hodgin JB, et al. Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2009;4(1):71–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhong J, et al. Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy. Kidney Int. 2005;68(3):1048–60.

    Article  CAS  PubMed  Google Scholar 

  28. Sakai K, et al. Focal segmental glomerulosclerosis as a complication of hepatitis B virus infection. Nephrol Dial Transplant. 2011;26(1):371–3.

    Article  PubMed  Google Scholar 

  29. di Belgiojoso GB, Ferrario F, Landriani N. Virus-related glomerular diseases: histological and clinical aspects. J Nephrol. 2002;15(5):469–79.

    PubMed  Google Scholar 

  30. Barisoni L, et al. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999;10(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  31. Moudgil A, et al. Association of parvovirus B19 infection with idiopathic collapsing glomerulopathy. Kidney Int. 2001;59(6):2126–33.

    Article  CAS  PubMed  Google Scholar 

  32. Dettmar AK, Oh J. Infection-related focal segmental glomerulosclerosis in children. Biomed Res Int. 2016;2016:7351964.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Santoriello D, et al. Postmortem kidney pathology findings in patients with COVID-19. J Am Soc Nephrol. 2020;31(9):2158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lentini P, et al. Kidney and heavy metals – The role of environmental exposure (Review). Mol Med Rep. 2017;15(5):3413–9.

    Article  CAS  PubMed  Google Scholar 

  35. Markowitz GS, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol. 2001;12(6):1164–72.

    Article  CAS  PubMed  Google Scholar 

  36. Dijkman HB, et al. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney Int. 2006;70(2):338–44.

    Article  CAS  PubMed  Google Scholar 

  37. Kelly RJ, Rixe O. Axitinib–a selective inhibitor of the vascular endothelial growth factor (VEGF) receptor. Target Oncol. 2009;4(4):297–305.

    Article  PubMed  Google Scholar 

  38. Mohamed N, et al. Collapsing glomerulopathy following anthracycline therapy. Am J Kidney Dis. 2013;61(5):778–81.

    Article  PubMed  Google Scholar 

  39. Bertani T, et al. Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. Lab Investig. 1982;46(1):16–23.

    CAS  PubMed  Google Scholar 

  40. Lee VW, Harris DC. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton). 2011;16(1):30–8.

    Article  Google Scholar 

  41. Selby P, et al. Nephrotic syndrome during treatment with interferon. Br Med J (Clin Res Ed). 1985;290(6476):1180.

    Article  CAS  Google Scholar 

  42. Quesada JR, et al. Clinical toxicity of interferons in cancer patients: a review. J Clin Oncol. 1986;4(2):234–43.

    Article  CAS  PubMed  Google Scholar 

  43. Markowitz GS, et al. Treatment with IFN-{alpha}, -{beta}, or -{gamma} is associated with collapsing focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2010;5(4):607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herlitz LC, et al. Development of focal segmental glomerulosclerosis after anabolic steroid abuse. J Am Soc Nephrol. 2010;21(1):163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dubrow A, et al. The changing spectrum of heroin-associated nephropathy. Am J Kidney Dis. 1985;5(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  46. Davis J, Desmond M, Berk M. Lithium and nephrotoxicity: unravelling the complex pathophysiological threads of the lightest metal. Nephrology (Carlton). 2018;23(10):897–903.

    Article  Google Scholar 

  47. Lukawska E, et al. Lithium toxicity and the kidney with special focus on nephrotic syndrome associated with the acute kidney injury: a case-based systematic analysis. J Appl Toxicol. 2021;41(12):1896–1909. https://doi.org/10.1002/jat.4167. Epub 2021 Apr 2.

  48. Tam VK, et al. Nephrotic syndrome and renal insufficiency associated with lithium therapy. Am J Kidney Dis. 1996;27(5):715–20.

    Article  CAS  PubMed  Google Scholar 

  49. Markowitz GS, Bomback AS, Perazella MA. Drug-induced glomerular disease: direct cellular injury. Clin J Am Soc Nephrol. 2015;10(7):1291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D’Agati VD. The spectrum of focal segmental glomerulosclerosis: new insights. Curr Opin Nephrol Hypertens. 2008;17(3):271–81.

    Article  PubMed  Google Scholar 

  51. Fogo A, et al. Is focal segmental glomerulosclerosis really focal? Distribution of lesions in adults and children. Kidney Int. 1995;47(6):1690–6.

    Article  CAS  PubMed  Google Scholar 

  52. Strassheim D, et al. IgM contributes to glomerular injury in FSGS. J Am Soc Nephrol. 2013;24(3):393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kersnik Levart T, et al. C1Q nephropathy in children. Pediatr Nephrol. 2005;20(12):1756–61.

    Article  PubMed  Google Scholar 

  54. van de Lest NA, et al. Glomerular C4d deposition can precede the development of focal segmental glomerulosclerosis. Kidney Int. 2019;96(3):738–49.

    Article  PubMed  Google Scholar 

  55. Heybeli C, et al. Mesangial C4d deposition is independently associated with poor renal survival in patients with primary focal segmental glomerulosclerosis. Clin Exp Nephrol. 2019;23(5):650–60.

    Article  CAS  PubMed  Google Scholar 

  56. D’Agati VD, et al. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43(2):368–82.

    Article  PubMed  Google Scholar 

  57. Graves RC, Fine RN. Kidney retransplantation in children following rejection and recurrent disease. Pediatr Nephrol. 2016;31(12):2235–47.

    Article  PubMed  Google Scholar 

  58. D’Agati VD, et al. Association of histologic variants in FSGS clinical trial with presenting features and outcomes. Clin J Am Soc Nephrol. 2013;8(3):399–406.

    Article  PubMed  Google Scholar 

  59. Laurin LP, et al. Renal survival in patients with collapsing compared with not otherwise specified FSGS. Clin J Am Soc Nephrol. 2016;11(10):1752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jayapandian CP, et al. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney Int. 2021;99(1):86–101.

    Article  CAS  PubMed  Google Scholar 

  61. Mariani LH, et al. CureGN study rationale, design, and methods: establishing a large prospective observational study of glomerular disease. Am J Kidney Dis. 2019;73(2):218–29.

    Article  PubMed  Google Scholar 

  62. Klaassen I, et al. Response to cyclosporine in steroid-resistant nephrotic syndrome: discontinuation is possible. Pediatr Nephrol. 2015;30(9):1477–83.

    Article  PubMed  Google Scholar 

  63. Smeets B, et al. Detection of activated parietal epithelial cells on the glomerular tuft distinguishes early focal segmental glomerulosclerosis from minimal change disease. Am J Pathol. 2014;184(12):3239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuppe C, et al. Novel parietal epithelial cell subpopulations contribute to focal segmental glomerulosclerosis and glomerular tip lesions. Kidney Int. 2019;96(1):80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Suzuki T, et al. Morphological features of minimal change disease and focal segmental glomerulosclerosis using repeat biopsy and parietal epithelial cell marker. Kidney Dis (Basel). 2020;6(2):119–24.

    Article  Google Scholar 

  66. Merchant ML, et al. Proteomic analysis identifies distinct glomerular extracellular matrix in collapsing focal segmental glomerulosclerosis. J Am Soc Nephrol. 2020;31(8):1883–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trautmann A, et al. Long-term outcome of steroid-resistant nephrotic syndrome in children. J Am Soc Nephrol. 2017;28(10):3055–65.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Troost JP, et al. Proteinuria reduction and kidney survival in focal segmental glomerulosclerosis. Am J Kidney Dis. 2021;77(2):216–25.

    Article  CAS  PubMed  Google Scholar 

  69. Tullus K, Webb H, Bagga A. Management of steroid-resistant nephrotic syndrome in children and adolescents. Lancet Child Adolesc Health. 2018;2(12):880–90.

    Article  PubMed  Google Scholar 

  70. Liu ID, et al. Interventions for idiopathic steroid-resistant nephrotic syndrome in children. Cochrane Database Syst Rev. 2019;2019(11).

    Google Scholar 

  71. Mendoza SA, et al. Treatment of steroid-resistant focal segmental glomerulosclerosis with pulse methylprednisolone and alkylating agents. Pediatr Nephrol. 1990;4(4):303–7.

    Article  CAS  PubMed  Google Scholar 

  72. Mantan M, et al. Efficacy of intravenous pulse cyclophosphamide treatment versus combination of intravenous dexamethasone and oral cyclophosphamide treatment in steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2008;23(9):1495–502.

    Article  PubMed  Google Scholar 

  73. Trautmann A, et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2020;35(8):1529–61.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ehrich JH, et al. Steroid-resistant idiopathic childhood nephrosis: overdiagnosed and undertreated. Nephrol Dial Transplant. 2007;22(8):2183–93.

    Article  PubMed  Google Scholar 

  75. Kemper MJ, Lemke A. Treatment of genetic forms of nephrotic syndrome. Front Pediatr. 2018;6:72.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Troost JP, et al. An outcomes-based definition of proteinuria remission in focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2018;13(3):414–21.

    Article  PubMed  Google Scholar 

  77. Lombel RM, et al. Treatment of steroid-resistant nephrotic syndrome in children: new guidelines from KDIGO. Pediatr Nephrol. 2013;28(3):409–14.

    Article  PubMed  Google Scholar 

  78. Choudhry S, et al. Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am J Kidney Dis. 2009;53(5):760–9.

    Article  CAS  PubMed  Google Scholar 

  79. Hamasaki Y, et al. Prospective 5-year follow-up of cyclosporine treatment in children with steroid-resistant nephrosis. Pediatr Nephrol. 2013;28(5):765–71.

    Article  PubMed  Google Scholar 

  80. Lombel RM, et al. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr Nephrol. 2013;28(3):415–26.

    Article  PubMed  Google Scholar 

  81. Gellermann J, Ehrich JH, Querfeld U. Sequential maintenance therapy with cyclosporin A and mycophenolate mofetil for sustained remission of childhood steroid-resistant nephrotic syndrome. Nephrol Dial Transplant. 2012;27(5):1970–8.

    Article  CAS  PubMed  Google Scholar 

  82. Ito S, et al. Survey of rituximab treatment for childhood-onset refractory nephrotic syndrome. Pediatr Nephrol. 2013;28(2):257–64.

    Article  PubMed  Google Scholar 

  83. Fujinaga S, Shimizu T. Chronic cyclosporine-induced nephrotoxicity in children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2013;28(10):2065–6.

    Article  PubMed  Google Scholar 

  84. Sinha A, et al. Calcineurin inhibitor induced nephrotoxicity in steroid resistant nephrotic syndrome. Indian J Nephrol. 2013;23(1):41–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sinha A, et al. Mycophenolate mofetil is inferior to tacrolimus in sustaining remission in children with idiopathic steroid-resistant nephrotic syndrome. Kidney Int. 2017;92(1):248–57.

    Article  CAS  PubMed  Google Scholar 

  86. Kemper MJ, Valentin L, van Husen M. Difficult-to-treat idiopathic nephrotic syndrome: established drugs, open questions and future options. Pediatr Nephrol. 2018;33(10):1641–9.

    Article  PubMed  Google Scholar 

  87. Querfeld U, Weber LT. Mycophenolate mofetil for sustained remission in nephrotic syndrome. Pediatr Nephrol. 2018;33(12):2253–65.

    Article  PubMed  Google Scholar 

  88. Gipson DS, et al. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int. 2011;80(8):868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Filler G, et al. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol. 2017;32(1):21–9.

    Article  PubMed  Google Scholar 

  90. Tan L, et al. Efficacy and acceptability of immunosuppressive agents for pediatric frequently-relapsing and steroid-dependent nephrotic syndrome: a network meta-analysis of randomized controlled trials. Medicine (Baltimore). 2019;98(22):e15927.

    Article  Google Scholar 

  91. van Husen M, Kemper MJ. New therapies in steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome. Pediatr Nephrol. 2011;26(6):881–92.

    Article  PubMed  Google Scholar 

  92. Bhatia D, et al. Rituximab modulates T- and B-lymphocyte subsets and urinary CD80 excretion in patients with steroid-dependent nephrotic syndrome. Pediatr Res. 2018;84(4):520–6.

    Article  CAS  PubMed  Google Scholar 

  93. Fornoni A, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3(85):85ra46.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bagga A, Sinha A, Moudgil A. Rituximab in patients with the steroid-resistant nephrotic syndrome. N Engl J Med. 2007;356(26):2751–2.

    Article  CAS  PubMed  Google Scholar 

  95. Kemper MJ, et al. Is rituximab effective in childhood nephrotic syndrome? Yes and no. Pediatr Nephrol. 2014;29(8):1305–11.

    Article  PubMed  Google Scholar 

  96. Sinha A, et al. Efficacy and safety of rituximab in children with difficult-to-treat nephrotic syndrome. Nephrol Dial Transplant. 2015;30(1):96–106.

    Article  CAS  PubMed  Google Scholar 

  97. Magnasco A, et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol. 2012;23(6):1117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ahn YH, et al. Efficacy and safety of rituximab in childhood-onset, difficult-to-treat nephrotic syndrome: a multicenter open-label trial in Korea. Medicine (Baltimore). 2018;97(46):e13157.

    Article  CAS  Google Scholar 

  99. Kamei K, et al. Rituximab therapy for refractory steroid-resistant nephrotic syndrome in children. Pediatr Nephrol. 2020;35(1):17–24.

    Article  PubMed  Google Scholar 

  100. Jellouli M, et al. Rituximab in The management of pediatric steroid-resistant nephrotic syndrome: a systematic review. J Pediatr. 2018;197:191–7.e1.

    Article  CAS  PubMed  Google Scholar 

  101. Mason AE, et al. Response to first course of intensified immunosuppression in genetically stratified steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2020;15(7):983–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fogueri U, et al. Rituximab exhibits altered pharmacokinetics in patients with membranous nephropathy. Ann Pharmacother. 2019;53(4):357–63.

    Article  CAS  PubMed  Google Scholar 

  103. Colucci M, et al. B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol. 2016;27(6):1811–22.

    Article  CAS  PubMed  Google Scholar 

  104. Basu B, Mahapatra TK, Mondal N. Mycophenolate Mofetil following rituximab in children with steroid-resistant nephrotic syndrome. Pediatrics. 2015;136(1):e132–9.

    Article  PubMed  Google Scholar 

  105. Kamei K, et al. Rituximab treatment combined with methylprednisolone pulse therapy and immunosuppressants for childhood steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2014;29(7):1181–7.

    Article  PubMed  Google Scholar 

  106. Basu B. Ofatumumab for rituximab-resistant nephrotic syndrome. N Engl J Med. 2014;370(13):1268–70.

    Article  CAS  PubMed  Google Scholar 

  107. Ravani P, et al. Low-dose ofatumumab for multidrug-resistant nephrotic syndrome in children: a randomized placebo-controlled trial. Pediatr Nephrol. 2020;35(6):997–1003.

    Article  PubMed  Google Scholar 

  108. Tarshish P, et al. Cyclophosphamide does not benefit patients with focal segmental glomerulosclerosis. A report of the International Study of Kidney Disease in Children. Pediatr Nephrol. 1996;10(5):590–3.

    Article  CAS  PubMed  Google Scholar 

  109. Bajpai A, et al. Intravenous cyclophosphamide in steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2003;18(4):351–6.

    Article  PubMed  Google Scholar 

  110. Gulati A, et al. Treatment with tacrolimus and prednisolone is preferable to intravenous cyclophosphamide as the initial therapy for children with steroid-resistant nephrotic syndrome. Kidney Int. 2012;82(10):1130–5.

    Article  CAS  PubMed  Google Scholar 

  111. Shah KM, Ohri AJ, Ali US. A randomized controlled trial of intravenous versus oral cyclophosphamide in steroid-resistant nephrotic syndrome in children. Indian J Nephrol. 2017;27(6):430–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Plank C, et al. Cyclosporin A is superior to cyclophosphamide in children with steroid-resistant nephrotic syndrome-a randomized controlled multicentre trial by the Arbeitsgemeinschaft fur Padiatrische Nephrologie. Pediatr Nephrol. 2008;23(9):1483–93.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fujinaga S, et al. Long-term outcomes after early treatment with rituximab for Japanese children with cyclosporine- and steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2019;34(2):353–7.

    Article  PubMed  Google Scholar 

  114. Bonanni A, et al. A pilot study of IL2 in drug-resistant idiopathic nephrotic syndrome. PLoS One. 2015;10(9):e0138343.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yu CC, et al. Abatacept in B7–1-positive proteinuric kidney disease. N Engl J Med. 2013;369(25):2416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Delville M, et al. B7–1 blockade does not improve post-transplant nephrotic syndrome caused by recurrent FSGS. J Am Soc Nephrol. 2016;27(8):2520–7.

    Article  PubMed  Google Scholar 

  117. Trachtman H, et al. Randomized clinical trial design to assess abatacept in resistant nephrotic syndrome. Kidney Int Rep. 2018;3(1):115–21.

    Article  PubMed  Google Scholar 

  118. Trachtman H, et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol. 2015;16:111.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Trachtman H, et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011;79(11):1236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Madan A, et al. Acthar gel in the treatment of nephrotic syndrome: a multicenter retrospective case series. BMC Nephrol. 2016;17:37.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hogan J, et al. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol. 2013;8(12):2072–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang CS, et al. Adrenocorticotropic hormone for childhood nephrotic syndrome: the ATLANTIS randomized trial. Clin J Am Soc Nephrol. 2018;13(12):1859–65.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chakraborty R, et al. ACTH treatment for management of nephrotic syndrome: a systematic review and reappraisal. Int J Nephrol. 2020;2020:2597079.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hayes K, et al. Repository corticotropin injection versus corticosteroids for protection against renal damage in a focal segmental glomerulosclerosis rodent model. BMC Nephrol. 2020;21(1):226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Raina R, Krishnappa V. An update on LDL apheresis for nephrotic syndrome. Pediatr Nephrol. 2019;34(10):1655–69.

    Article  PubMed  Google Scholar 

  126. Raina R, et al. Dextran-sulfate plasma adsorption lipoprotein apheresis in drug resistant primary focal segmental glomerulosclerosis patients: results from a prospective, multicenter, single-arm intervention study. Front Pediatr. 2019;7:454.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Shah L, et al. LDL-apheresis-induced remission of focal segmental glomerulosclerosis recurrence in pediatric renal transplant recipients. Pediatr Nephrol. 2019;34(11):2343–50.

    Article  PubMed  Google Scholar 

  128. De Smet E, et al. FSGS permeability factor-associated nephrotic syndrome: remission after oral galactose therapy. Nephrol Dial Transplant. 2009;24(9):2938–40.

    Article  PubMed  Google Scholar 

  129. Sgambat K, Banks M, Moudgil A. Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2013;28(11):2131–5.

    Article  PubMed  Google Scholar 

  130. Trachtman H, et al. DUET: a phase 2 study evaluating the efficacy and safety of Sparsentan in patients with FSGS. J Am Soc Nephrol. 2018;29(11):2745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zagury A, et al. Steroid-resistant idiopathic nephrotic syndrome in children: long-term follow-up and risk factors for end-stage renal disease. J Bras Nefrol. 2013;35(3):191–9.

    Article  PubMed  Google Scholar 

  132. Cattran DC, Rao P. Long-term outcome in children and adults with classic focal segmental glomerulosclerosis. Am J Kidney Dis. 1998;32(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  133. Koh LJ, et al. Risk factors associated with allograft failure in pediatric kidney transplant recipients with focal segmental glomerulosclerosis. Pediatr Transplant. 2019;23(5):e13469.

    Article  PubMed  Google Scholar 

  134. Canaud G, et al. Recurrence of nephrotic syndrome after transplantation in a mixed population of children and adults: course of glomerular lesions and value of the Columbia classification of histological variants of focal and segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant. 2010;25(4):1321–8.

    Article  PubMed  Google Scholar 

  135. Morello W, et al. Post-transplant recurrence of steroid resistant nephrotic syndrome in children: the Italian experience. J Nephrol. 2020;33(4):849–57.

    Article  CAS  PubMed  Google Scholar 

  136. Weber LT, et al. Clinical practice recommendations for recurrence of focal and segmental glomerulosclerosis/steroid-resistant nephrotic syndrome. Pediatr Transplant. 2021;25(3):e13955.

    Article  CAS  PubMed  Google Scholar 

  137. Holmberg C, Jalanko H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr Nephrol. 2014;29(12):2309–17.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Josef Kemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kemper, M.J., Gibson, K., Sinha, A. (2022). Nongenetic Forms of Steroid-Resistant Nephrotic Syndrome. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_93

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics