Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 632 Accesses

Abstract

With the basic content of this thesis being simulations of quantum spin-1/2 systems, we start introducing the underlying concepts and properties of those and of quantum mechanics in general. Clarifying the basics, we provide a starting point to perform approximate simulations of these computationally unfeasible problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Troyer M (2012) Lecture notes on computational quantum physics. http://edu.itp.phys.ethz.ch/fs12/cqp/

  2. Bartelmann Matthias, Lüst Dieter, Wipf Andreas, Rebhan Anton, Feuerbacher Björn, Krüger Timm (2015) Die Entstehung der Quantenphysik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54618-1_21

  3. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information. In: 10th, Anniversary edn. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667

  4. Parkinson JB, Farnell DJJ (2010) An introduction to quantum spin systems. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-13290-2

  5. Gerlach Walther, Stern Otto (1922) Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z Phys 9(1):349–352 Dec. https://doi.org/10.1007/BF01326983

  6. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777–780 May. https://link.aps.org/doi/10.1103/PhysRev.47.777

  7. John Stewart Bell (1964) On the einstein podolsky Rrsen paradox. Physics 1(3):195–200. https://cds.cern.ch/record/111654

  8. Bell John S (1966) On the problem of hidden variables in quantum mechanics. Rev Mod Phys 38:447–452 Jul. https://link.aps.org/doi/10.1103/RevModPhys.38.447

  9. Bell JS, Alain A (2004) Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy, 2 edn. Cambridge University Press. https://doi.org/10.1017/CBO9780511815676

  10. Clauser John F, Horne Michael A, Shimony Abner, Holt Richard A (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23:880–884 Oct. https://link.aps.org/doi/10.1103/PhysRevLett.23.880

  11. Clauser John F, Horne Michael A (1974) Experimental consequences of objective local theories. Phys Rev D 10:526–535 Jul. https://link.aps.org/doi/10.1103/PhysRevD.10.526

  12. Cirel’son BS (1980) Quantum generalizations of Bell’s inequality. Lett Math Phys 4(2):93–100 Mar. https://doi.org/10.1007/BF00417500

  13. Greenberger DM, Horne MA, Zeilinger A (1989) Going beyond Bell’s theorem, pp 69–72. Springer, Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-0849-4_10

  14. Dür W, Vidal G, Cirac JI (2000) Three qubits can be entangled in two inequivalent ways. Phys Rev A 62:062314 Nov. https://link.aps.org/doi/10.1103/PhysRevA.62.062314

  15. Gisin N, Bechmann-Pasquinucci H (1998) Bell inequality, Bell states and maximally entangled states for \(n\) qubits. Phys. Lett. A 246(1):1–6. http://www.sciencedirect.com/science/article/pii/S0375960198005167

  16. Pfeuty P (1970) The one-dimensional Ising model with a transverse field. Ann Phys 57:79–90. https://doi.org/10.1016/0003-4916(70)90270-8

  17. Calabrese P, Essler FHL, Fagotti M (2012) Quantum quench in the transverse field Ising chain: I. time evolution of order parameter correlators. J Stat Mech Theory Exp 2012(07):P07016. https://doi.org/10.1088%2F1742-5468%2F2012%2F07%2Fp07016

  18. Calabrese P, Essler FHL, Fagotti M (2012) Quantum quenches in the transverse field Ising chain: II. stationary state properties. J Stat Mech Theory Exp 2012(07):P07022. https://doi.org/10.1088%2F1742-5468%2F2012%2F07%2Fp07022

  19. Karl Markus, Cakir Halil, Halimeh Jad C, Oberthaler Markus K, Kastner Michael, Gasenzer Thomas (2017) Universal equilibrium scaling functions at short times after a quench. Phys Rev E 96:022110 Aug. https://link.aps.org/doi/10.1103/PhysRevE.96.022110

  20. Sachdev S (2011) Quantum phase transitions, 2 edn. Cambridge University Press. https://doi.org/10.1017/CBO9780511973765

  21. Lieb Elliott, Schultz Theodore, Mattis Daniel (1961) Two soluble models of an antiferromagnetic chain. Ann Phys 16(3):407–466. http://www.sciencedirect.com/science/article/pii/0003491661901154

  22. Sachdev S, Young AP (1997) Low temperature relaxational dynamics of the Ising chain in a transverse field. Phys Rev Lett 78:2220–2223. https://link.aps.org/doi/10.1103/PhysRevLett.78.2220

  23. Cakir H (2015) Dynamics of the transverse field Ising chain after a sudden quench. Master’s thesis, Ruprecht-Karls-Universität Heidelberg

    Google Scholar 

  24. Iglói F, Lin Y-C (2008) Finite-size scaling of the entanglement entropy of the quantum Ising chain with homogeneous, periodically modulated and random couplings. J Stat Mech Theory Exp 2008(06):P06004. https://doi.org/10.1088/1742-5468/2008/06/p06004

  25. Czischek S, Gärttner M, Oberthaler M, Kastner M, Gasenzer T (2018) Quenches near criticality of the quantum Ising chain–power and limitations of the discrete truncated Wigner approximation. Quant Sci Technol 4(1):014006. http://stacks.iop.org/2058-9565/4/i=1/a=014006

  26. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630 May. https://link.aps.org/doi/10.1103/PhysRev.106.620

  27. Jaynes ET (1957) Information theory and statistical mechanics. II. Phys Rev 108:171–190 Oct. https://link.aps.org/doi/10.1103/PhysRev.108.171

  28. Czischek Stefanie, Gärttner Martin, Gasenzer Thomas (2018) Quenches near Ising quantum criticality as a challenge for artificial neural networks. Phys Rev B 98:024311 Jul. https://doi.org/10.1103/PhysRevB.98.024311

  29. Schollwöck Ulrich (2011) The density-matrix renormalization group in the age of matrix product states. Ann Phys 326(1):96–192. http://www.sciencedirect.com/science/article/pii/S0003491610001752

  30. Ovchinnikov AA, Dmitriev DV, Krivnov V Ya, Cheranovskii VO (2003) Antiferromagnetic Ising chain in a mixed transverse and longitudinal magnetic field. Phys Rev B 68(21):214406 Dec. https://link.aps.org/doi/10.1103/PhysRevB.68.214406

  31. Noack RM, Manmana SR (2005) Diagonalization-and numerical renormalization-group-based methods for interacting quantum systems. AIP Conf Proc 789(1):93–163. https://aip.scitation.org/doi/abs/10.1063/1.2080349

  32. Laflorencie N, Poilblanc D (2004) Simulations of pure and doped low-dimensional spin-1/2 gapped systems, pp 227–252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119595

  33. Weiße A, Fehske H (2008) Exact diagonalization techniques, pp 529–544. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74686-7_18

  34. White Steven R (1992) Density matrix formulation for quantum renormalization groups. Phys Rev Lett 69:2863–2866 Nov. https://link.aps.org/doi/10.1103/PhysRevLett.69.2863

  35. White Steven R (1993) Density-matrix algorithms for quantum renormalization groups. Phys Rev B 48:10345–10356 Oct. https://link.aps.org/doi/10.1103/PhysRevB.48.10345

  36. Bridgeman JC, Chubb CT (2017) Hand-waving and interpretive dance: an introductory course on tensor networks. J Phys Math Theor 50(22):223001. https://doi.org/10.1088%2F1751-8121%2Faa6dc3

  37. Vidal Guifré (2004) Efficient simulation of one-dimensional quantum many-body systems. Phys Rev Lett 93:040502 Jul. https://link.aps.org/doi/10.1103/PhysRevLett.93.040502

  38. Östlund Stellan, Rommer Stefan (1995) Thermodynamic limit of density matrix renormalization. Phys Rev Lett 75:3537–3540 Nov. https://link.aps.org/doi/10.1103/PhysRevLett.75.3537

  39. Baxter RJ (1968) Dimers on a rectangular lattice. J Math Phys 9(4):650–654. https://doi.org/10.1063/1.1664623

  40. Orús Román (2014) A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann Phys 349:117–158. https://www.sciencedirect.com/science/article/pii/S0003491614001596

  41. Stoudenmire EM, White SR (2010) Minimally entangled typical thermal state algorithms. New J Phys 12(5):055026. https://doi.org/10.1088%2F1367-2630%2F12%2F5%2F055026

  42. Dukelsky J, Martín-Delgado MA, Nishino T, Sierra G (1998) Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains. EPL 43(4):457–462 Aug. https://doi.org/10.1209%2Fepl%2Fi1998-00381-x

  43. White Steven R, Feiguin Adrian E (2004) Real-time evolution using the density matrix renormalization group. Phys Rev Lett 93:076401 Aug. https://link.aps.org/doi/10.1103/PhysRevLett.93.076401

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Czischek .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Czischek, S. (2020). Quantum Mechanics and Spin Systems. In: Neural-Network Simulation of Strongly Correlated Quantum Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-52715-0_2

Download citation

Publish with us

Policies and ethics