Skip to main content

Basic Requirements to Designing Collaborative Augmented Reality

Status Quo and First Insights to a User-Centered Didactic Concept

  • Conference paper
  • First Online:
Cross Reality and Data Science in Engineering (REV 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1231))

Abstract

Augmented Reality (AR) has become a ubiquitous technology in daily working, learning, and spare life. However, AR still lacks research in terms of productivity and design for being effective on users and the situations it is used in. Particularly in collaborative and also educational settings, the technology has to be adapted in order to be effective for all users concerned. Moreover, the design of the scenario the technology is realised in has to be adapted to the needs and requirements of a productive digital learning environment. In this context, the question still needs investigation how these applications affected e.g. the learning process. As a basis, this paper examines the state of the art of the design process in terms of developing collaborative AR applications and their respective use cases. Besides technical requirements, this paper also focuses on user-centered criteria in terms of usability and effectiveness for collaborative processes in order to lay the groundwork for designing a didactical concept. In order to develop a list of requirements of design criteria for both the didactic scenario and the collaborative AR application, a literature-based requirements analysis has been conducted. Thus, a set of criteria for designing collaborative AR has been deduced. This set is categorised in order to give a detailed description for developing AR applications for collaborative settings on different levels and constraints, e.g. regarding didactic methods, implementation process, usability and user experience design, and necessary resources (for both developing and using collaborative AR). Also, the catalogue presented in this paper will not be finalised but iteratively adjusted to the findings of the empirical study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gartner: 5 Trends Appear on the Gartner Hype Cycle for Emerging Technologies 2019 (2019). https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-2019

  2. Schmalstieg, D., Hollerer, T.: Augmented Reality: Principles and Practice. Addison-Wesley Professional, Boston (2016)

    Google Scholar 

  3. Barr, R.B., Tagg, J.: From teaching to learning: a new paradigm for undergraduate education. Change Mag. High. Learn. 27(6), 13–26 (1995)

    Google Scholar 

  4. FitzGerald, E., Adams, A., Ferguson, R., Gaved, M., Mor, Y., Thomas, R.: Augmented reality and mobile learning: the state of the art. In: 11th World Conference on Mobile and Contextual Learning (mLearn 2012), 16–18 October 2012, Helsinki, Finland (2012)

    Google Scholar 

  5. Radu, J.: Augmented reality in education: a meta-review and cross-media analysis. Pers. Ubiquituous Comput. 18(6), 1533–1543 (2014)

    Article  Google Scholar 

  6. Roschelle, J., Teasley, S.D.: The construction of shared knowledge in collaborative problem solving. In: O’Malley, C. (ed.) Computer Supported Collaborative Learning, pp. 69–97. Springer, Berlin (1995)

    Chapter  Google Scholar 

  7. Hogue, T.: Community-based collaboration: community wellness multiplied. Oregon Center for Community Leadership, Oregon State University (1993)

    Google Scholar 

  8. Borden, L.M., Perkins, D.F.: Assessing your collaboration: a self-evaluation tool. J. Extension 37(2), 67–72 (1999)

    Google Scholar 

  9. Schmidtler, J., Knott, V., Hölzel, C., Bengler, K., Schlick, C.M., Bützler, J.: Human centered assistance applications for the working environment of the future. OER 12(3), 83–95 (2015)

    Article  Google Scholar 

  10. Omnasch, L., Maier, X., Jürgensohn, T.: ‘Mensch-Roboter-Kollaboration – Eine Taxonomie für alle Anwendungsfälle. Dortmund (2016)

    Google Scholar 

  11. Wood, D.J., Gray, B.: Toward a comprehensive theory of collaboration. J. Appl. Behav. Sci. 27(2), 139–162 (1991)

    Article  Google Scholar 

  12. Beckers, K.: Kommunikation und Kommunizierbarkeit von Wissen – Prinzipien und Strategien kooperativer Wissenskonstruktion. Zeitschrift für Rezensionen zur germanistischen Sprachwissenschaft, vol. 5(2) (2013)

    Google Scholar 

  13. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE (Institute of Electronics, Information and Communication Engineers) Transactions on Information and Systems, December 1994

    Google Scholar 

  14. Zobel, B., Berkemeier, L., Werning, S., Thomas, O.: Augmented reality am arbeitsplatz der zukunft: ein usability-framework für smart glasses. In: Mayr, H.C., Pinzger, M. (eds.) Informatik 2016, pp. 1727–1740. Bonn, Gesellschaft für Informatik e.V. (2016)

    Google Scholar 

  15. Söbke, H., Montag, M., Zander, S.: Von der AR-App zur Lernerfahrung: Entwurf eines formalen Rahmens zum Einsatz von Augmented Reality als Lehrwerkzeug. In: Proceedings der Pre-Conference-Workshops der 15. E-Learning Fachtagung Informatik DelFI 2017, Chemnitz, Germany (2017)

    Google Scholar 

  16. Zobel, B., Werning, S., Berkemeier, L., Thomas, O.: Augmented- und virtual-reality-technologien zur digitalisierung der aus- und weiterbildung – überblick, klassifikation und vergleich. In: Thomas, O., Metzger, D. and Niegemann, H. (eds.) Digitalisierung in der Aus- und Weiterbildung, pp. 20–34 (2018)

    Google Scholar 

  17. Zabel, C., Heisenberg, G.: Virtual-, Mixed- und Augmented Reality in NRW – Potenziale und Bedarfe der nordrhein-westfälischen VR-, MR- AR-Branche (2017)

    Google Scholar 

  18. Alptekin, M.: Möglichkeiten und Grenzen von Virtual- und Augmented Reality im Laborpraktikum. Tagungsband der 12. Regionaltagung, Technische Universität Ilmenau 2017 (2018)

    Google Scholar 

  19. Daniel, C., Schulte, S., Petersen, M.: Virtuelles Schweißen – Digitale Lernmöglichkeiten und didaktische Potenziale einer Simulation für Lehrende und Lernende. Tagungsband der 12. Regionaltagung, Technische Universität Ilmenau 2017 (2018)

    Google Scholar 

  20. Ermel, D., Kirstein, J., Haase, S., Saul, C., Großmann, H.: Elixier – Didaktisch-technologische Konzeption einer Mixed-Reality-Experimentierumgebung. Tagungsband der 12. Regionaltagung, Technische Universität Ilmenau 2017 (2018)

    Google Scholar 

  21. Huntemann, N., Krömker, H.: Patterns für die Entwicklung von interaktiven 3D-Modellen. Tagungsband der 12. Regionaltagung, Technische Universität Ilmenau 2017 (2018)

    Google Scholar 

  22. Nenner, C., Bergert, A.: Digital. International. Interdisziplinär. Neue Lehr-Lernformate für die Ingenieurausbildung. Tagungsband der 12. Regionaltagung, Technische Universität Ilmenau 2017 (2018)

    Google Scholar 

  23. Stefan, D.P., Pfandler, M., Wucherer, P., Habert, S., Fürmetz, J., Weidert, S., Euler, E., Eck, U., Lazarovici, M., Weigl, M., Navab, N.: Teamtraining und assessment im mixed-reality-basierten simulierten OP. Der Unfallchirurg 121, 271–277 (2018)

    Article  Google Scholar 

  24. Niegemann, L., Niegemann, H.: Potenziale und Hemmnisse von AR- und VR-Medien zur Unterstützung der Aus- und Weiterbildung im technischen Service. In: Thomas, O., Metzger, D., Niegemann, H. (eds.) Digitalisierung in der Aus- und Weiterbildung, pp. 20–34 (2018)

    Google Scholar 

  25. Choi, S.H., Kim, M., Lee, J.Y.: Situation-dependent remote AR collaborations: Image-based collaboration using a 3D perspective map and live video-based collaboration with a synchronized VR mode. Comput. Ind. 101, 51–66 (2018)

    Article  Google Scholar 

  26. Abramovici, M., Wolf, M., Adwernat, S., Neges, M.: Context-aware maintenance support for augmented reality assistance and synchronous multi-user collaboration. Procedia CIRP 59, 18–22 (2017)

    Article  Google Scholar 

  27. Elvezio, C., Sukan, M., Oda, O., Feiner, S., Tversky, B.: Remote collaboration in AR and VR using virtual replicas. In: ACM SIGGRAPH 2017 VR Village (2017)

    Google Scholar 

  28. Piumsomboon, T., Lee, Y., Lee, G., Billinghurst, M.: CoVAR: a collaborative virtual and augmented reality system for remote collaboration. In: SIGGRAPH Asia 2017 Emerging Technologies, Bangkok, Thailand (2017)

    Google Scholar 

  29. Huang, W., Kim, S., Billinghurst, M., Alem, L.: Sharing hand gesture and sketch cues in remote collaboration. J. Vis. Commun. Image Represent. 58, 428–438 (2019)

    Article  Google Scholar 

  30. Piumsomboon, T., Day, A., Ens, B., Lee, Y., Lee, G., Billinghurst, M.: Exploring enhancements for remote mixed reality collaboration. In: SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications (2017)

    Google Scholar 

  31. Zenati, N., Benbelkacem, S., Belhocine, M., Bellarbi, A.: A new AR interaction for collaborative E-maintenance system. IFAC Proceedings 46(9), 619–624 (2013)

    Article  Google Scholar 

  32. Piumsomboon, T., Lee, G.A., Hart, J.D., Ens, B., Lindeman, R.W., Thomas, B.H., Billinghurst, M.: Mini-me: an adaptive avatar for mixed reality remote collaboration. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (2018)

    Google Scholar 

  33. Cheng, K.H., Tsai, C.C.: The interaction of child–parent shared reading with an augmented reality (AR) picture book and parents’ conceptions of AR learning. Br. J. Edu. Technol. 47(1), 203–222 (2016)

    Article  Google Scholar 

  34. Hilliges, O., Kim, D., Izadi, S., Molyneaux, D., Hodges, S.E., Butler, D.A.: U.S. Patent No. 9,529,424. Washington, DC: U.S. Patent and Trademark Office (2016)

    Google Scholar 

  35. Bennett, D., Mount, B.J., Scavezze, M.J., McCulloch, D.J., Ambrus, A.J., Steed, J.T., Geisner, K.A.: U.S. Patent No. 9,292,085. Washington, DC: U.S. Patent and Trademark Office (2016)

    Google Scholar 

  36. Haring, T.M.: U.S. Patent Application No. 14/882,474 (2016)

    Google Scholar 

  37. Barzuza, T., Wiener, Y., Modai, O.: U.S. Patent No. 9,959,676. Washington, DC: U.S. Patent and Trademark Office (2018)

    Google Scholar 

  38. Weisman, J.K., Redmann, W.G.: U.S. Patent No. 9,779,548. Washington, DC: U.S. Patent and Trademark Office (2017)

    Google Scholar 

  39. Liu, R., Salisbury, J.P., Vahabzadeh, A., Sahin, N.T.: Feasibility of an autism-focused augmented reality smartglasses system for social communication and behavioral coaching. Front. Pediatr. 5, 145 (2017)

    Article  Google Scholar 

  40. Müller, J., Rädle, R., Reiterer, H.: Virtual objects as spatial cues in collaborative mixed reality environments: how they shape communication behavior and user task load. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1245–1249 (2016)

    Google Scholar 

  41. Akçayır, M., Akçayır, G.: Advantages and challenges associated with augmented reality for education: a systematic review of the literature. Educ. Res. Rev. 20, 1–11 (2017)

    Article  Google Scholar 

  42. Hintz, A.J.: Erfolgreiche Mitarbeiterführung durch soziale Kompetenz. Springer Fachmedien, Wiesbaden (2016)

    Book  Google Scholar 

  43. Hissnauer, W. Arbeit im Team. Mainz: ILF

    Google Scholar 

  44. Mayring, P.: Qualitative inhaltsanalyse. In: Flick, U., Kardoff, E.V., Keupp, H., Rosenstiel, L.v., Wolff, S. (eds.) Handbuch qualitative Forschung in der Psychologie. München: Beltz, pp. 601–613 (2010)

    Google Scholar 

  45. Bainbridge, L., Nasmith, L., Orchard, C., Wood, V.: Competencies for interprofessional collaboration. J. Phys. Therapy Educ. 24(1), 6–11 (2010)

    Article  Google Scholar 

  46. San Martín-Rodríguez, L., Beaulieu, M.-D., D’Amour, D., Ferrada-Videla, M.: The determinants of successful collaboration: a review of theoretical and empirical studies. J. Interprof. Care 19(1), 132–147 (2009)

    Google Scholar 

  47. Lincoln, P., Blate, A., Singh, M., Whitted, T., State, A., Lastra, A., Fuchs, H.: From motion to photons in 80 microseconds: towards minimal latency for virtual and augmented reality. IEEE Trans. Visual Comput. Graph. 22(4), 1367–1376 (2016)

    Article  Google Scholar 

  48. Janßen, U.D.: Einfluss von Persönlichkeitseigenschaften und immersiven Benutzerschnittstellen auf User Experience und Leistung. Aachen: apprimus (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Schiffeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schiffeler, N., Varney, V., Borowski, E., Isenhardt, I. (2021). Basic Requirements to Designing Collaborative Augmented Reality. In: Auer, M., May, D. (eds) Cross Reality and Data Science in Engineering. REV 2020. Advances in Intelligent Systems and Computing, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-52575-0_20

Download citation

Publish with us

Policies and ethics