Skip to main content

Efficiency of Active Flow Control in an Unsteady Stator Vane Flow Field

  • Chapter
  • First Online:
Fundamentals of High Lift for Future Civil Aircraft

Abstract

Active flow control (AFC) has been proven to be an effective method to counteract flow disturbances and improve the performance of flow systems. Here, we compare the efficiency of open- and closed-loop AFC for a periodically disturbed compressor stator cascade flow. While still being effective in damping disturbances, it turned out that an additional efficiency gain could not be confirmed for this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seifert, A., Darabi, A., Wygnanski, I.: Delay of airfoil stall by periodic excitation. J. Aircraft 33(4), 691–698 (1996)

    Article  Google Scholar 

  2. Tiedemann, C., Heinrich, A., Peitsch, D.: Increasing blade turning by active flow control and tandem configurations: a comparison. ISABE-2017-22575, 2017

    Google Scholar 

  3. Nerger, D. Saathoff, H., Radespiel, R., Gümmer, V., Clemen. C.: Experimental investigation of endwall and suction side blowing in a highly loaded compressor stator cascade. J. Turbomach. 134(3),021010–1–12 (2012)

    Google Scholar 

  4. Culley, D.E., Bright, M.M., Prahst, P.S., Strazisar, A.J.: Active flow separation control of a stator vane using embedded injection in a multistage compressor experiment. J. Turbomach. 126(1), 24–34 (2004)

    Article  Google Scholar 

  5. Hecklau, M., Gmelin, C., Nitsche, W., Thiele, F., Huppertz, A., Swoboda, M.: Experimental and numerical results of active flow control on a highly loaded stator cascade. Proc. Inst. Mech. Eng. A 225(7), 907–918 (2011)

    Article  Google Scholar 

  6. Matejka, M., Popelka, L., Safarik, P., Nozicka, J.: Influence of active methods of flow control on compressor blade cascade flow. ASME GT2008-51109, 2008

    Google Scholar 

  7. Bussing, T., Pappas, G.: An introduction to pulsed detonation engines. AIAA paper 0263, 1994

    Google Scholar 

  8. Bobusch, B.C., Berndt, P., Paschereit, C.O., Klein, R.: Shockless explosion combustion: an innovative way of efficient constant volume combustion in gas turbines. Combust. Sci. Technol. 186(10–11), 1680–1689 (2014)

    Google Scholar 

  9. Farokhi, S.: Aircraft Propulsion. John Wiley & Sons, New York (2014)

    Google Scholar 

  10. Steinberg, S.J.: Learning control algorithms for an unsteady stator vane flow field, Ph.D Thesis, Technische Universität Berlin, 2018

    Google Scholar 

  11. Bae, J.: Active Control of Tip Clearance Flow in Axial Compressors. Ph.D Thesis, MIT, Cambridge, MA, USA, 2001

    Google Scholar 

  12. Staats, M., Nitsche, W.: Active control of the corner separation on a highly loaded compressor cascade with periodic non-steady boundary conditions by means of fluidic actuators. J. Turbomach. 138(11):031004-1-9 (2015)

    Google Scholar 

  13. Staats, M., Nitsche, W.: Aktive Strömungskontrolle eines komplexen Strömungsfeldes an einer hochbelasteten Verdichterkaskade unter instationären Randbedingungen mit Hilfe von fluidischen Aktuatoren in den Seitenwänden und der Statorbeschaufelung. Proceedings 20th DGLR-Fach-Symposium der STAB, 2016

    Google Scholar 

  14. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control, Analysis and Design, 2nd edn. John Wiley & Sons, New York (2005)

    MATH  Google Scholar 

  15. Hecklau, M., van Rennings, R., Zander, V., Nitsche, W., Huppertz, A., Swoboda, M.: Particle image velocimetry of active flow control on a compressor cascade. Exp. Fluids 50(4), 799–811 (2011)

    Google Scholar 

  16. Steinberg, S.J., Staats, M., Nitsche, W., King, R.: Comparison of Conventional and Repetitive MPC with Application to a Periodically Disturbed Compressor Stator Vane Flow. IFAC PapersOnLine 50–1, 11107–11112 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) as part of CRC 1029: “Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics”, B06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudibert King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinberg, S.J., King, R. (2021). Efficiency of Active Flow Control in an Unsteady Stator Vane Flow Field. In: Radespiel, R., Semaan, R. (eds) Fundamentals of High Lift for Future Civil Aircraft. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-030-52429-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52429-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52428-9

  • Online ISBN: 978-3-030-52429-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics