Skip to main content

Aerodynamics and Loss Accounting of a Low Pressure Ratio Fan for an Over-Wing Mounted Engine

  • Chapter
  • First Online:
Fundamentals of High Lift for Future Civil Aircraft

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 145))

  • 1169 Accesses

Abstract

In recent research, several Boundary Layer Ingesting propulsors concepts have been investigated with varying degrees of airframe integration. The contribution compares the well-known approach of a \(60^\circ \) circumferential inlet distortion with a configuration of a partly wing-embedded and a fully embedded engine integration. The second type is characterized by a local distortion while the whole flow field of the third shows flow variations. Conventional distortion metrics are getting close to their limits for an adequate assessment. The focus of this contribution lies in highlighting differences in loss generation through the fan stage and at dedicated stations. The stator blade row has a changing role in terms of entropy production, depending on the distortion type. Concepts for a stator refitting are presented and successfully applied. Almost one-third of efficiency drop is recovered for the final design change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drela, M.: Power balance in aerodynamic flows. AIAA J. 47(7), 1761–1771 (2009). https://doi.org/10.2514/1.42409. ISSN: 0001-1452

  2. Smith, A., Roberts, H.E.: The jet airplane utilizing boundary layer air for propulsion. J. Aeronaut. Sci. 14(2), 97–109 (1947). https://doi.org/10.2514/8.1273

  3. Smith, L.H.: Wake ingestion propulsion benefit. J. Propul. Power 9(1), 74–82. (1993). https://doi.org/10.2514/3.11487. ISSN: 0748-4658

  4. Daggett, D.L., Kawai, R.T., Friedman, D.M.: Blended Wing Body system studies: Boundary Layer Ingestion inlets with active flow control. NASA/CR-2003-212670 (2003)

    Google Scholar 

  5. Hall, C.A., Chrichton, D.: Engine and installation configurations for a Silent Aircraft. In: 17th International Symposium on Airbreathing Engines, ISABE-2005-1164 (2005)

    Google Scholar 

  6. Uranga, A., Drela, M., Greitzer, E., et al.: Preliminary experimental assessment of the Boundary Layer Ingestion benefit for the D8 aircraft. In: 52nd Aerospace Sciences Meeting. Reston, Virginia (2014). https://doi.org/10.2514/6.2014-0906

  7. Isikveren, A.T., Seitz, A., Bijewitz, J., et al.: Distributed propulsion and ultra-high bypass rotor study at aircraft level. Aeronaut. J. 119(1221), 1327–1376 (2015). ISSN: 0001-9240

    Google Scholar 

  8. Hall, C.A., Schwartz, E., Hilemann, J.I.: Assessment of technologies for the Silent Aircraft Initiative. J. Propul. Power 25(6), 1153–1162 (2009). https://doi.org/10.2514/1.43079

  9. Seitz, A., Peter, F., Bijewitz, J., et al.: Concept validation study for fuselage wake-filling propulsion integration. In: 31st Congress of the International Council of the Aeronautical Sciences (2018)

    Google Scholar 

  10. Castillo Pardo, A., Hall, C.A.: Aerodynamics of boundary layer ingesting fuselage fans. In: 24th International Society for Air Breathing Engines Conference, ISABE-2019-24162, Canberra, Australia (2019)

    Google Scholar 

  11. Reid, C.: The response of axial flow compressors to intake flow distortion. In: ASME 1969 Gas Turbine Conference and Products Show, 69-GT-29, Cleveland, Ohio (1969). https://doi.org/10.1115/69-GT-29

  12. Society of Automotive Engineers: Inlet total-pressure-distortion considerations for gas-turbine engines. AIR-1419 (2013)

    Google Scholar 

  13. Heinze, W., Weiss, T.: Main data sheet—a/c type: SFB880 reference aircraft REF3-2015 (2015). www.tu-braunschweig.de/sfb880

  14. Giesecke, D., Lehmler, M., Friedrichs, J., et al.: Evaluation of ultra-high bypass ratio engines for an over-wing aircraft configuration. J. Global Power Propul. Soc. 3(3), 493–515 (2018). https://doi.org/10.2261/JGPPS.8SHP7K

  15. Müller, T., Giesecke, D., Friedrichs, et al.: Thermodynamic and rotordynamic assessment of conventional and ultra-high bypass ratio engines. In: 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Maui, USA (2017)

    Google Scholar 

  16. Giesecke, D., Friedrichs, J.: Aerodynamic comparison between circumferential and wing-embedded inlet distortion for an ultra-high bypass ratio fan stage. In: Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2A: Turbomachinery, GT2019-90425, Phoenix, Arizona, USA (2019). https://doi.org/10.1115/GT2019-90425

  17. Giesecke, D., Friedrichs, J., Stark, U.: Preliminary aerodynamic design of a fan stage for an ultra-high bypass ratio engine. In: 23rd International Society of Air Breathing Engines Conference, ISABE-2017-22533, Manchester, UK (2017)

    Google Scholar 

  18. Kaplan, B.: Design of an advanced fan stage with ultra high bypass ratio and comparison with experimental results. DLR-FB-2010-20, PhD thesis, Ruhr-Universität Bochum, Germany (2010)

    Google Scholar 

  19. Kennedy, S., Robinson, T., Spence, S., Richardson, J.: Computational investigation of inlet distortion at high angles of attack. J. Aircr. 51(2), 361–376 (2014)

    Article  Google Scholar 

  20. Schönweitz, D., Schnell, R.: Development and evaluation of a performance estimation methodology for fans operating within non-homogenous inflow. In: Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 2D: Turbomachinery, GT2016-57095, Seoul, South Korea (2016). https://doi.org/10.1115/GT2016-57095

  21. Gunn, E.J., Hall, C.A.: Aerodynamics of boundary layer ingesting fans. In: Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 1A: Aircraft Engine; Fans and Blowers, GT2014-26142, Düsseldorf, Germany (2014). https://doi.org/10.1115/GT2014-26142

  22. Madani, V., Hynes, T.: Boundary layer ingesting intakes: design and optimization. In: 19th International Society of Air Breathing Engines Conference, ISABE-2009-1346, Montreal, Canada (2009)

    Google Scholar 

  23. Heykena, C., Friedrichs, J.: Aerodynamic investigation of an embedded UHBR-engine concept. In: Proceedings of GPPS Forum 18 Global Power and Propulsion Society, Zurich, Switzerland (2018)

    Google Scholar 

  24. Gunn, E.J., Tooze, S.E., Hall, C.A., Colin, Y.: An experimental study of loss sources in a fan operating with continuous inlet stagnation pressure distribution. J. Turbomach. 135(5), 051002 (2013). https://doi.org/10.1115/1.4007835

  25. Mazzawy, R.S.: Multiple segment parallel compressor model for circumferential flow distortion. J. Turbomach. 99(2) (1977). https://doi.org/10.115/1.3446288

    Google Scholar 

  26. Lesser, A.: Numerische Untersuchungen von Axialverdichtern mit gestörter Zuströmung. Ph.D. thesis, Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik, Neubiberg, Germany (2014)

    Google Scholar 

  27. Krone, J.-H., Harjes, L., Frantzheld, P., Koch, P., Giesecke, D., Friedrichs, J.: Atmospheric crosswind tests of aspirated jet engine intake models. In: Proceedings of Zurich 2019 Global Power and Propulsion Forum, GPPS-TC-2019-0018, Zurich, Switzerland (2019)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Whittle Laboratory of the University of Cambridge for providing the inlet flow field of the Cambridge-MIT ’Silent Aircraft Initiative’. The Boundary Layer Ingestion research team at the Whittle Laboratory, and in particular Cesare A. Hall, Alejandro Castillo Pardo, Phoenix Tse, and Dusan Perovic, are gratefully acknowledged for the profound discussions and suggestions. Many thanks are also due Liping Xu and Ivor Day for comments on BLI and fan design. Udo Stark from the Institute of Fluid Mechanics at TU Braunschweig is also thanked for relevant discussions and continuous support.

The authors gratefully acknowledge the funding as part of the Coordinated Research Centre 880 (Sonderforschungsbereich 880, SFB 880) provided by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Giesecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giesecke, D., Friedrichs, J. (2021). Aerodynamics and Loss Accounting of a Low Pressure Ratio Fan for an Over-Wing Mounted Engine. In: Radespiel, R., Semaan, R. (eds) Fundamentals of High Lift for Future Civil Aircraft. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-030-52429-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52429-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52428-9

  • Online ISBN: 978-3-030-52429-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics