Skip to main content

Unconventional Applications and New Approaches for Flow Control

  • Chapter
  • First Online:
Fundamentals of High Lift for Future Civil Aircraft

Abstract

This article consists of a review of unconventional applications of flow control interspersed with new techniques for actuation. The flow control studies are aimed at solving a broad set of aerodynamic and propulsion flow problems targeting commercial and military applications. The applications range from aerodynamic performance improvements, up to solutions to airplane operational issues. The flow control techniques are used for reducing drag, controlling flow separation, as well as manipulating vortical flow structures for achieving a desired objective. An important driver for the development of the new techniques is a result of particular focus on issues of practical integration, where actuation input is within available resources onboard. A systematic approach based on computational simulations is used to provide insight into the flow problem, facilitate root cause analyses, and develop flow control approaches. Both fluidic actuation and morphing structures are considered. Actuator concepts and aspects of system integration are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wygnanski, I.: The variables affecting the control of separation by periodic excitation, AIAA Paper 2004–2505 (2004)

    Google Scholar 

  2. McVeigh, M.A., Nagib, H., Wood, T., Wygnanski, I.: Full-scale flight tests of active flow control to reduce tiltrotor aircraft download. J. Aircraft 48(3), 786–796 (2011)

    Article  Google Scholar 

  3. Whalen, E., Shmilovich, A., Spoor, M., Tran, J., Vijgen, P., Lin, C.J., Andino, M.: Full-scale flight test of an active flow control enhanced vertical tail. AIAA J. 56(9), 3393–3398 (2018)

    Article  Google Scholar 

  4. Buning, P.G., Chiu, I.T., Obayash, S., Rizk, Y.M., Steger, J.L.: Numerical simulation of the integrated space shuttle vehicle in ascent. AIAA Paper 1988–4359 (1988)

    Google Scholar 

  5. Ciobaca, V., Wild, J.: Active flow control for an outer wing model of a take-off transport aircraft configuration—A numerical study, AIAA Paper 2014–2403 (2014)

    Google Scholar 

  6. Bauer, M., Grund, T., Nitsche, W.: Experiments on active drag reduction on a complex outer wing model. AIAA J. 53(7), 1774–1783 (2015)

    Article  Google Scholar 

  7. Schloesser, P., Soudakov, V., Bauer, M., Wild, J.: Active separation control of the pylon-wing junction of a real-scale model. AIAA J. 57(1), 132–141 (2019)

    Article  Google Scholar 

  8. Warsop, C., Forster, M., Crowther, W.: NATO AVT-239 task group: supercritical coanda based circulation control and fluidic thrust vectoring, AIAA Paper 2019–0044 (2019)

    Google Scholar 

  9. Shmilovich, A., Yadlin, Y., Whalen, E.: Active flow control computations: from a single actuator to a complete airplane. AIAA J. 56(12), 4730–4740 (2018)

    Article  Google Scholar 

  10. Seele, R., Graff, E., Lin, J., Wygnanski, I.: Performance enhancement of a vertical tail model with sweeping jet actuators, AIAA Paper 2013–411 (2013)

    Google Scholar 

  11. Andino, M., Lin, J., Washburn, A., Whalen, E., Graff, E., Wygnanski, I.: Flow separation control on a full-scale vertical tail model using sweeping jet actuators, AIAA Paper 2015–0785 (2015)

    Google Scholar 

  12. Hartwich, P., Camacho, P., El-Gohari, K., Gonzales, A., Lawson, E., Shmilovich, A.: System-level trade studies for transonic transports with active flow control (AFC) enhanced high-lift systems, AIAA Paper 2017–0321 (2017)

    Google Scholar 

  13. Shmilovich, A., Yadlin, Y., Dickey, E., Hartwich, P., Khodadoust, A.: Development of an active flow control technique for an airplane high-lift configuration, AIAA Paper 2017–0322 (2017)

    Google Scholar 

  14. El Sayed, Y., Semaan, R., Radespiel, R: Sparse modeling of the lift gains of a high-lift configuration with periodic coanda blowing, AIAA Paper 2018–1054 (2018)

    Google Scholar 

  15. El Sayed, Y., Gomes de Paula, N.C., Sedlacek, D., Semaan, R., Radespiel, R.: Investigations into the effects of unsteady blowing on the wake of a coanda flap, AIAA Paper 2019–0587 (2019)

    Google Scholar 

  16. Radespiel, R., Heinze, W., Bertsch, L.: High-lift research for future transport aircraft, DLR report 450128 (2017)

    Google Scholar 

  17. Johns, C.J.: The aircraft engine inlet vortex problem, AIAA Paper 2002-5894 (2002)

    Google Scholar 

  18. Shmilovich, A., Yadlin, Y.: Engine vortex flows and methods of vortex alleviation. In: Proceedings of the 3rd International Conference on Vortex Flows and Vortex Models, Yokohama, Japan (2005)

    Google Scholar 

  19. Yadlin, Y., Shmilovich, A.: Computational method for assessment of flow control techniques for airplane propulsion systems, AIAA Paper 2008–4084 (2008)

    Google Scholar 

  20. Crow, S.C., Bate, E.R.: Lifespan of trailing vortices in a turbulent atmosphere. J. Aircraft 13(7), 476–482 (1976)

    Article  Google Scholar 

  21. Crouch, J.D., Spalart, P.R.: Active-control system for breakup of airplane trailing vortices. AIAA J. 39(12), 2374–2381 (2001)

    Article  Google Scholar 

  22. Greenblatt, D.: Fluidic control of a wing tip vortex. AIAA J. 50(2), 375–386 (2012)

    Article  Google Scholar 

  23. Shmilovich, A., Yadlin, Y.: Flow control of airplane trailing wakes. In: Proceedings of the 4th International Conference on Vortex Flows and Vortex Models, Daejeon, S. Korea (2008)

    Google Scholar 

  24. Shmilovich, A., Yadlin, Y.: Flow control techniques for transport aircraft. AIAA J. 49(3), 489–502 (2011)

    Article  Google Scholar 

  25. Yadlin, Y., Shmilovich, A., Narducci, P.R.: A method and applications for tracking airplane trailing wakes, AIAA Paper 2010-0324 (2010)

    Google Scholar 

  26. Shmilovich, A., Yadlin, Y.: Traverse actuation method, AIAA Paper 2016-3309 (2016)

    Google Scholar 

  27. Shmilovich, A., Yadlin, Y., Dickey, E., Gissen, A.N., Whalen, E.: Lift recovery for AFC-enabled high lift system. NASA Contractor Report, NASA-CR-2017–219636 (June 2017)

    Google Scholar 

  28. Shmilovich, A., Yadlin, Y., Vijgen, P.: Active flow control systems and methods for aircraft, US Patent 10 308 350 (2019)

    Google Scholar 

  29. Shmilovich, A., Whalen, E.: A technique for low input flow control actuation, AIAA Paper 2017–3040 (2017)

    Google Scholar 

  30. Shmilovich, A., Whalen, E.: Strategies for practical implementations of low-input thermal flow control, AIAA Paper 2019-0886 (2019)

    Google Scholar 

  31. Hirsch, D., Shmilovich, A., Whalen, E., Gharib, M.: A technique for enhanced flow control efficiency through thermal actuation. AIAA J. 52(9), 3399–3413 (2018)

    Article  Google Scholar 

  32. Garner, P., Meredith, P., Stoner, R.: Areas for future CFD development as illustrated by transport aircraft applications. AIAA: 1991–1527 (1991)

    Google Scholar 

  33. NASA Aeronautics Research Mission Directorate. Strategic Implementation Plan, 2017 Update,NP-2017-01-2352-HQ (2017). https://www.nasa.gov/sites/default/files/atoms/files/sip-2017-03-23-17-high.pdf

  34. AFLoNext Project (2017). https://www.aflonext.eu

  35. Shmilovich, A., Yadlin, Y.: High-lift systems for enhanced takeoff performance. In: 28th International Congress of the Aeronautical Sciences, ICAS Paper #157 (2012)

    Google Scholar 

  36. Shmilovich, A., Yadlin, Y.: Flow control for enhanced airplane takeoff performance, AIAA Paper 2020-0784 (2020)

    Google Scholar 

  37. Shmilovich, A., Yadlin, Y., Smith, M.D., Clark, W.R.: Integrated engine exhaust systems and methods for drag and thermal stress reduction, US Patent 7 669 785 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvin Shmilovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shmilovich, A. (2021). Unconventional Applications and New Approaches for Flow Control. In: Radespiel, R., Semaan, R. (eds) Fundamentals of High Lift for Future Civil Aircraft. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-030-52429-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52429-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52428-9

  • Online ISBN: 978-3-030-52429-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics