Skip to main content

Technological Advancements in Ultrasound

  • Chapter
  • First Online:
Practical Urological Ultrasound
  • 1137 Accesses

Abstract

Recent technological advancements have driven the development of several promising new ultrasound modalities. Improvements in image reconstruction algorithms, computational and system hardware, contrast agent biochemistry, and laser technology have enabled anatomical, functional, and molecular imaging with unprecedented levels of detail. In this chapter, we survey the principles and applications of ultrafast imaging and motion tracking, vector flow imaging, super-resolution imaging with ultrasound localization microscopy, ultrasound molecular imaging, and noncontact laser ultrasound imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shattuck D, Weinshenker M, Smith S, Vonramm O. Explososcan - a parallel processing technique for high-speed ultrasound imaging with linear phased-arrays. J Acoust Soc Am. 1984;75(4):1273–82.

    Article  CAS  PubMed  Google Scholar 

  2. Delannoy B, Torguet R, Bruneel C, Bridoux E, Rouvaen J, Lasota H. Acoustical image-reconstruction in parallel-processing analog electronic systems. J Appl Phys. 1979;50(5):3153–9.

    Article  Google Scholar 

  3. Montaldo G, Tanter M, Bercoff J, Benech N, Fink M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient Elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(3):489–506.

    Article  PubMed  Google Scholar 

  4. Smith S, Pavy H, Vonramm O. High-speed ultrasound volumetric imaging-system .1. Transducer design and beam steering. IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  5. Thomenius K, Levy M, Schneider S, McAvoy B. Evolution of ultrasound beamformers. 1996 IEEE ultrasonics symposium, proceedings, Vols 1 and 2, 1996, pp. 1615–1622.

    Google Scholar 

  6. Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(1):102–19.

    Article  PubMed  Google Scholar 

  7. Demene C, Mairesse J, Baranger J, Tanter M, Baud O. Ultrafast doppler for neonatal brain imaging. NeuroImage. 2019;185:851–6.

    Article  PubMed  Google Scholar 

  8. Jensen JA. Estimation of blood velocities using ultrasound: a signal processing approach. Cambridge, England: Cambridge University Press; 1996.

    Google Scholar 

  9. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Article  PubMed  Google Scholar 

  10. Jensen J, Nikolov S, Yu A, Garcia D. Ultrasound vector flow imaging-part I: sequential systems. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(11):1704–21.

    PubMed  Google Scholar 

  11. Jensen J, Nikolov S, Yu A, Garcia D. Ultrasound vector flow imaging-part II: parallel systems. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(11):1722–32.

    Article  PubMed  Google Scholar 

  12. Gallippi C, Trahey G. Adaptive clutter filtering via blind source separation for two-dimensional ultrasonic blood velocity measurement. Ultrason Imaging. 2002;24(4):193–214.

    Article  PubMed  Google Scholar 

  13. Demene C, Deffieux T, Pernot M, Osmanski B, Biran V, Gennisson J, et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and Ultrasound sensitivity. IEEE Trans Med Imaging. 2015;34(11):2271–85.

    Article  PubMed  Google Scholar 

  14. Song P, Manduca A, Trzasko J, Chen S. Ultrasound small vessel imaging with block-wise adaptive local clutter filtering. IEEE Trans Med Imaging. 2017;36(1):251–62.

    Article  PubMed  Google Scholar 

  15. Osmanski B, Pezet S, Ricobaraza A, Lenkei Z, Tanter M. Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution. Nat Commun. 2014;5:5023.

    Article  CAS  PubMed  Google Scholar 

  16. Kasai C, Namekawa K. Real-time two-dimensional blood-flow imaging using ultrasound doppler. Jpn J Appl Phys Part 1-Regular Papers Short Notes & Review Papers. 1987;26:9–13.

    Article  Google Scholar 

  17. Pinton G, Dahl J, Trahey G. Rapid tracking of small displacements with ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(6):1103–17.

    Article  PubMed  Google Scholar 

  18. Jensen J, Munk P. A new method for estimation of velocity vectors. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(3):837–51.

    Article  CAS  PubMed  Google Scholar 

  19. Fadnes S, Nyrnes S, Torp H, Lovstakken L. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. Ultrasound Med Biol. 2014;40(10):2379–91.

    Article  PubMed  Google Scholar 

  20. Yiu B, Lai S, Yu A. Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns. Ultrasound Med Biol. 2014;40(9):2295–309.

    Article  PubMed  Google Scholar 

  21. Faurie J, Baudet M, Assi K, Auger D, Gilbert G, Tournoux F, et al. Intracardiac vortex dynamics by high-frame-rate doppler Vortography-in vivo comparison with vector flow mapping and 4-D flow MRI. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(2):424–32.

    Article  PubMed  Google Scholar 

  22. Wigen M, Fadnes S, Rodriguez-Molares A, Bjastad T, Eriksen M, Stensaeth K, et al. 4-D Intracardiac ultrasound vector flow imaging-feasibility and comparison to phase-contrast MRI. IEEE Trans Med Imaging. 2018;37(12):2619–29.

    Article  PubMed  Google Scholar 

  23. Goodman JW. Introduction to Fourier optics. Greenwood Village, CO, USA: Roberts and Company Publishers; 2005.

    Google Scholar 

  24. Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell. 2010;143(7):1047–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527(7579):499−+.

    Article  PubMed  CAS  Google Scholar 

  26. Couture O, Hingot V, Heiles B, Muleki-Seya P, Tanter M. Ultrasound localization microscopy and super-resolution: a state of the art. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(8):1304–20.

    Article  PubMed  Google Scholar 

  27. Opacic T, Dencks S, Theek B, Piepenbrock M, Ackermann D, Rix A, et al. Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nat Commun. 2018;9:1527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lin F, Shelton S, Espindola D, Rojas J, Pinton G, Dayton P. 3-D ultrasound localization microscopy for identifying microvascular morphology features of tumor angiogenesis at a resolution beyond the diffraction limit of conventional ultrasound. Theranostics. 2017;7(1):196–204.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ghosh D, Xiong F, Sirsi S, Mattrey R, Brekken R, Kim J, et al. Monitoring early tumor response to vascular targeted therapy using super-resolution ultrasound imaging. 2017 IEEE international ultrasonics symposium (Ius), 2017.

    Google Scholar 

  30. Ghosh D, Peng J, Sirsi S, Mineo C, Mattrey R, Shaul P, et al. Super-resolution ultrasound imaging of the microvasculature in skeletal muscle: a new tool in diabetes research. 2017 IEEE international ultrasonics symposium (Ius), 2017.

    Google Scholar 

  31. Abou-Elkacem L, Bachawal S, Willmann J. Ultrasound molecular imaging: moving toward clinical translation. Eur J Radiol. 2015;84(9):1685–93.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Klibanov A. Ultrasound molecular imaging with targeted microbubble contrast agents. J Nucl Cardiol. 2007;14(6):876–84.

    Article  PubMed  Google Scholar 

  33. Willmann J, Cheng Z, Davis C, Lutz A, Schipper M, Nielsen C, et al. Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology. 2008;249(1):212–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Phillips P, Yuhas D, Schneider S. Contrast Pulse Sequences (CPS): imaging nonlinear microbubbles. 2001 IEEE ultrasonics symposium proceedings, Vols 1 and 2, 2001, pp. 1739–1745.

    Google Scholar 

  35. Shelton S, Lindsey B, Tsuruta J, Foster F, Dayton P. Molecular acoustic angiography: a new technique for high-resolution superharmonic ultrasound molecular imaging. Ultrasound Med Biol. 2016;42(3):769–81.

    Article  PubMed  Google Scholar 

  36. Herbst E, Unnikrishnan S, Klibanov A, Mauldin F, Hossack J. Validation of normalized singular spectrum area as a classifier for molecularly targeted microbubble adherence. Ultrasound Med Biol. 2019;45(9):2493–501.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Couture O, Fink M, Tanter M. Ultrasound contrast plane wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(12):2676–83.

    Article  PubMed  Google Scholar 

  38. Hyun D, Brickson LL, Abou-Elkacem L, Bam R, Dahl JJ, editors. Nondestructive targeted microbubble detection using a dual-frequency beamforming deep neural network. 2018 IEEE international ultrasonics symposium (IUS); 2018, IEEE.

    Google Scholar 

  39. Hyun D, Abou-Elkacem L, Perez V, Chowdhury S, Willmann J, Dahl J. Improved sensitivity in ultrasound molecular imaging with coherence-based beamforming. IEEE Trans Med Imaging. 2018;37(1):241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chadderdon S, Belcik J, Bader L, Kirigiti M, Peters D, Kievit P, et al. Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation. 2014;129(4):471–8.

    Article  CAS  PubMed  Google Scholar 

  41. Willmann J, Bonomo L, Testa A, Rinaldi P, Rindi G, Valluru K, et al. Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol. 2017;35(19):2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smeenge M, Tranquart F, Mannaerts C, de Reijke T, van de Vijver M, Laguna M, et al. First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer a safety and feasibility pilot study. Investig Radiol. 2017;52(7):419–27.

    Article  CAS  Google Scholar 

  43. Wang L, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson J, Merrilees M, Shragge J, van Wijk K. All-optical extravascular laser-ultrasound and photoacoustic imaging of calcified atherosclerotic plaque in excised carotid artery. Photo-Dermatology. 2018;9:62–72.

    Google Scholar 

  45. Paltauf G, Nuster R, Haltmeier M, Burgholzer P. Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. Appl Opt. 2007;46(16):3352–8.

    Article  PubMed  Google Scholar 

  46. Eom J, Park S, Lee B. Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry. J Biomed Opt. 2015;20(10):106007.

    Article  PubMed  Google Scholar 

  47. Johnson J, Shragge J, van Wijk K. Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging. J Biomed Opt. 2017;22(4):41014.

    Article  PubMed  Google Scholar 

  48. Johnson J, van Wijk K, Sabick M. Characterizing phantom arteries with multi-channel laser ultrasonics and photo-acoustics. Ultrasound Med Biol. 2014;40(3):513–20.

    Article  PubMed  Google Scholar 

  49. Haupt R, Wynn C, Fincke J, Zhang X, Anthony B, Samir A. Non-contact laser ultrasound concept for biomedical imaging. 2017 IEEE international ultrasonics symposium (Ius), 2017.

    Google Scholar 

  50. Zhang X, Fincke JR, Wynn CM, Johnson MR, Haupt RW, Anthony BW. Full noncontact laser ultrasound: first human data. Light: Sci Appl. 2019;8(1):119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwoon Hyun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hyun, D. (2021). Technological Advancements in Ultrasound. In: Fulgham, P.F., Gilbert, B.R. (eds) Practical Urological Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-030-52309-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52309-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52308-4

  • Online ISBN: 978-3-030-52309-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics