Skip to main content

Configurational Model of Quasi-2D Organic Conductor Electron Subsystem

  • Conference paper
  • First Online:
Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 247))

  • 226 Accesses

Abstract

Model of electronic subsystem of (BEDT-TTF)2X family has been studied theoretically within Green function equation of motion approach. Transition from insulating to metallic behavior is described as a gap opening in the quasiparticle spectrum under doping, the external pressure application or increasing temperature. Out-of-plane hopping is shown to control Fermi surface shape and conductivity, being different from bulk systems ones. On this basis, we discuss the experimental phase diagrams for quasi-two-dimensional organic conductors with strong electron correlations and correlated hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Powell BJ, McKenzie RH (2006) Strong electronic correlations in superconducting organic charge transfer salts. J Phys: Condens Matter 18:R827–R866

    ADS  Google Scholar 

  2. Scriven E, Powell BJ (2009) Toward the parametrization of the Hubbard model for salts of bis(ethylenedithio)tetrathiafulvalene: a density functional study of isolated molecules. J Chem Phys 130:104508

    Article  ADS  Google Scholar 

  3. Ivanov VA, Ugolkova EA, Zhuravlev ME (1998) Electronic structure and superconductivity of κ-(BEDT-TTF)2X salts. Zh Eksp Teor Fiz 113:715–733

    Google Scholar 

  4. Lebed AG (2008) The physics of organic superconductors and conductors. Springer series in materials science, vol110. Springer, Berlin, Heidelberg

    Google Scholar 

  5. Skorenkyy Yu, Kramar O (2006) Energy spectrum of the organic quasi-1D conductors with NNN and correlated hopping. Condens Matter Phys 9:161–168

    Article  Google Scholar 

  6. Skorenkyy Yu, Kramar O (2016) Antiferromagnetic ordering and pseudogap in a model of quasi-1D organic superconductor electronic subsystem. Mol Cryst Liq Cryst 639:24–32

    Article  Google Scholar 

  7. Kubo K, Miyasaka H, Yamashita M (2010) Crystal structure and electrical conductivity of α’’’-[BEDT-TTF.12[Cu2Br 4.3 (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene). Physica B 405:S308–S312

    Article  ADS  Google Scholar 

  8. Ishiguro T, Yamaji K, Saito G (1998) Organic superconductors. Springer series in solid-state sciences, vol 88. Springer, Berlin

    Google Scholar 

  9. Commeau B, Geilhufe RM, Fernando G, Balatsky AV (2017) Structural and electronic properties of α-(BEDT-TTF)2I3, β-(BEDT-TTF)2I3, and κ-(BEDT-TTF)2X3 (X = I, F, Br, Cl) organic charge transfer salts. Phys Rev B 96:125135

    Article  ADS  Google Scholar 

  10. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  11. Ito H et al (2005) Charge carriers in the divalent conductor (BEDT-TTF)Cu2Br 4. Phys Rev B 71:085202

    Article  ADS  Google Scholar 

  12. Maesato M, Kaga Y, Kondo R, Kagoshima S (2001) Control of electronic properties of α − (BEDT − TTF)2MHg(SCN)4 (M = K, NH4) by the uniaxial strain method. Phys Rev B 64:155104

    Article  ADS  Google Scholar 

  13. Pratt FL et al (1992) Magnetotransport and Fermi-surface topology of [bis(ethylenedithio)tetrathiafulvalene.2KHg(SCN)4. Phys Rev B 63:13904–13912

    Article  ADS  Google Scholar 

  14. Choi ES et al, Magnetothemopower study of quasi two-dimensional organic conductor -(BEDT-TTF) KHg(SCN). Phys Rev B 65:205119

    Google Scholar 

  15. Tanatar MA et al (2002) Pressure-temperature phase diagram of the organic superconductor κ − (BEDT − TTF)2Cu[N(CN)2.I. Phys Rev B 65:064516

    Google Scholar 

  16. Miyazaki A et al (1997) Phase transition of (BEDT-TTF)3(HSO4)2. Phys Rev B 55:6847–6855

    Article  ADS  Google Scholar 

  17. Sasaki T et al (2004) Electronic correlation in the infrared optical properties of the quasi-two-dimensional κ-type BEDT-TTF dimer system. Phys Rev B 69:064508

    Article  ADS  Google Scholar 

  18. Sekiyama A et al (1997) High-resolution photoemission study of metallic, insulating, and superconducting BEDT-TTF salts. Phys Rev B, 56:9082–9090

    Google Scholar 

  19. Kawamoto A, Honma Y, Kumagai K (2004) Electron localization in the strongly correlated organic system κ-(BEDT-TTF)2X probed with nuclear magnetic resonance. Phys Rev B 70:060510

    Article  ADS  Google Scholar 

  20. Larkin MI et al (2001) Pressure dependence of the magnetic penetration depth in κ-(BEDT-TTF)2Cu(NCS)2. Phys Rev B 64:144514

    Article  ADS  Google Scholar 

  21. Kanoda K (1997) Electron correlation, metal-insulator transition and superconductivity in quasi-2D organic systems, (ET)2X. Phys C 282–287:299–302

    Article  ADS  Google Scholar 

  22. Yong-Nian Xu, Ching WY, JeanY C, Lou Y (1995) First-principles calculation of the electronic and optical properties of the organic superconductor κ-(BEDT-TTF)2Cu(NSC)2. Phys Rev B 52:12946–12950

    Article  ADS  Google Scholar 

  23. Hofstetter W, Vollhardt D (1998) Frustration of antiferromagnetism in the t-t’-Hubbard model at weak coupling. Cornell University Library. E-print cond-mat/9802233

    Google Scholar 

  24. Kino H, Fukuyama H (1996) Phase diagram of two-dimensional organic conductors (BEDT-TTF)2X. J Phys Soc Jpn 65:215821–215869

    Article  Google Scholar 

  25. Demiralp E, Goddard WA (1997) Conduction properties of the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 based on Hubbard-unrestricted-Hartree-Fock band calculations. Phys Rev B 56:11907–11919

    Article  ADS  Google Scholar 

  26. McKenzie R (1998) A strongly correlated electron model for the layered organic superconductors κ-(BEDT-TTF)2X. Comments Cond Matt Phys 18:309–328

    Google Scholar 

  27. Didukh L, Skorenkyy Yu, Dovhopyaty Yu, Hankevych V (2000) Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping. Phys Rev B 61:7893–7908

    Article  ADS  Google Scholar 

  28. Skorenkyy Yu et al (2007) Mott transition, ferromagnetism and conductivity in the generalized Hubbard model. Acta Phys Pol, A 111:635–644

    Article  ADS  Google Scholar 

  29. Didukh L, Skorenkyy Yu, Kramar O (2008) Electron correlations in narrow energy bands: modified polar model approach. Condens Matter Phys 11:443–454

    Article  Google Scholar 

  30. Parcollet O, Biroli G, Kotliar G (2004) Cluster dynamical mean field analysis of the Mott transition. Phys Rev Lett 92:226402

    Article  ADS  Google Scholar 

  31. Kuroki K, Aoki H (1999) Superconductivity and spin correlation in organic conductors: a quantum Monte Carlo study. Phys Rev B 60:3060–3063

    Article  ADS  Google Scholar 

  32. Skorenkyy Y, Kramar O, Didukh L, Dovhopyaty Y (2018) Electron correlation effects in theoretical model of doped fullerides. In: Fesenko O, Yatsenko L (eds) Nanooptics, nanophotonics, nanostructures, and their applications. NANO 2017. Springer proceedings in physics, vol 210. Springer, Cham

    Google Scholar 

  33. Skorenkyy Y (2019) Phase transitions in a model of BEDT-TTF compound electron subsystem. Mater Today: Proc https://doi.org/10.1016/j.matpr.2019.10.164

  34. Gebhard F (1997) The Mott metal-insulator transition: models and methods. Springer, Berlin

    Book  Google Scholar 

  35. Georges A, Kotliar G, Krauth W, Rozenberg M (1996) Dynamical mean-field theory of strongly correlated fermion systems and limit of infinite dimensions. Rev Mod Phys 68:13–125

    Article  ADS  MathSciNet  Google Scholar 

  36. Anderson PW (1961) Localized magnetic states in metals. Phys Rev 124:41–53

    Article  ADS  MathSciNet  Google Scholar 

  37. Georges A, Krauth W (1993) Physical properties of the half-filled Hubbard model in infinite dimensions. Phys Rev B 48:7167–7182

    Article  ADS  Google Scholar 

  38. Kajueter H, Kotliar G, Moeller G (1996) Doped Mott insulator: results from mean-field theory. Phys Rev B. 53:16214–16226

    Article  ADS  Google Scholar 

  39. Pruschke Th, Kox DL, Jarrell M (1993) Hubbard model at infinite dimensions: thermodynamics and transport properties. Phys Rev B. 47:3553–3565

    Article  ADS  Google Scholar 

  40. Zhang XY, Rozenberg M, Kotliar G (1993) Mot transition in the $d\to\infty$ Hubbard model at zero temperature. Phys Rev Lett 70:1666–1669

    Article  ADS  Google Scholar 

  41. Caffarel M, Krauth W (1994) Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. Phys Rev Lett 72:1545–1548

    Article  ADS  Google Scholar 

  42. Noack RM, Gebhard F (1999) Mott-Hubbard transition in infinite dimensions. Phys Rev Lett 82:1915–1918

    Article  ADS  Google Scholar 

  43. Bulla R (1999) Zero temperature metal-insulator transition in the infinite dimensional Hubbard model. Phys Rev Lett 83:136–139

    Article  ADS  Google Scholar 

  44. Górski G, Mizia J, Kucab K (2014) New Green’s function approach describing the ferromagnetic state in the Hubbard model with correlated hopping. Physica Status Solidi (B) 251:2294–2301

    Article  ADS  Google Scholar 

  45. Górski G, Mizia J, Kucab K (2016) Modified equation of motion approach for metallic ferromagnetic systems with the correlated hopping interaction. Physica Status Solidi (B) 253:1202–1209

    Article  ADS  Google Scholar 

  46. Górski G, Kucab K (2018) Effect of assisted hopping on spin-dependent thermoelectric transport through correlated quantum dot. Physica B 545:337–345

    Article  ADS  Google Scholar 

  47. Górski G, Mizia J, Kucab K (2019) Influence of assisted hopping interaction on the linear conductance of quantum dot. Physica E 111:190–200

    Article  ADS  Google Scholar 

  48. Kramar O, Skorenkyy Yu, Dovhopyaty Yu (2019) Effective masses of carriers in the degenerate conduction band: interplay of density of electronic states peculiarities and magnetization. J Nano-Electron Phys 11:05030(6)

    Google Scholar 

  49. Didukh L, Skorenkyy Yu (2000) Electron correlations in narrow energy bands: ground state energy and metal-insulator transition. Cond Matt Phys 3:787–798

    Article  Google Scholar 

  50. Didukh L, Skorenkyy Yu, Kramar O, Dovhopyaty Yu (2006) Effect of magnetic field, pressure and correlated hopping of electrons on conductivity of Mott-Hubbard material. Physica B 378–380:321–322

    Article  ADS  Google Scholar 

  51. Didukh L, Skorenkyy Yu, Hankevych V, Kramar O (2001) Ground state ferromagnetism in a doubly orbitally degenerate model. Phys Rev B 64:144428

    Article  ADS  Google Scholar 

  52. Didukh L, Hankevych V, Kramar O, Skorenkyy Yu (2002) Itinerant ferromagnetism of systems with orbital degeneracy. J Phys: Condens Matter 14:827–835

    ADS  Google Scholar 

  53. Didukh L, Kramar O (2002) Metallic ferromagnetism in a generalized Hubbard model. Fizika Nizkikh Temperatur (Kharkov) 28:42–50

    Google Scholar 

  54. Didukh L, Kramar O, Skorenkyy Y (2002) Ground state energy of metallic ferromagnet in a generalized Hubbard model. Physica Status Solidi (B) 229:1241–1254

    Article  ADS  Google Scholar 

  55. Didukh L, Kramar O (2005) Metallic ferromagnetism in the systems with strongly correlated electrons. Condens Matter Phys 8:547–564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Skorenkyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skorenkyy, Y. (2020). Configurational Model of Quasi-2D Organic Conductor Electron Subsystem. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications . Springer Proceedings in Physics, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-030-52268-1_6

Download citation

Publish with us

Policies and ethics